
Euroopa Liit
Euroopa

Regionaalarengu Fond

Eesti
tuleviku heaks

Analysis of planned architectural changes in
Open-eID

Technical document

Version 1.3

December 18, 2020

65 pages

Doc. T-176-1

Project leaders: Tõnis Reimo (Estonian Information System Authority)
Sandhra-Mirella Valdma (Cybernetica)

Contributing authors: Kristjan Krips (Cybernetica)
Mart Oruaas (Cybernetica)
Alisa Pankova (Cybernetica)
Jan Willemson (Cybernetica)

Estonian Information System Authority, Pärnu maantee 139a, 15169 Tallinn, Estonia.
Email: ria@ria.ee, Web: https://www.ria.ee, Phone: +372 663 0200.

Cybernetica AS, Mäealuse 2/1, 12618 Tallinn, Estonia.
E-mail: info@cyber.ee, Web: https://www.cyber.ee, Phone: +372 639 7991.

© Estonian Information System Authority, 2020

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

2 / 65

mailto:ria@ria.ee
https://www.ria.ee
mailto:info@cyber.ee
https://www.cyber.ee

Contents

Contents . 3

1 Executive summary . 7

2 Introduction . 9
2.1 Terminology . 9
2.2 The scope of the analysis . 10
2.3 Security objectives and requirements . 11

2.3.1 Security of authentication . 11
2.3.2 Security of signing . 12

3 Technologies . 13
3.1 Arguments for choosing OpenID Connect ID Token format and custom protocol . 13
3.2 Token Binding . 13
3.3 Certificate Transparency . 14
3.4 OCSP stapling . 15
3.5 TLS session resumption . 16

4 Compatibility with TLS Client Certificate Authentication 17
4.1 Comparison of TLS-CCA with other common authentication architectures 17
4.2 Session hijacking attacks . 18

5 Protection against man-in-the-middle attacks . 20
5.1 Origin validation . 20
5.2 Certificate validation . 21
5.3 An alternative approach: signing the challenge 22
5.4 Remaining risks and possible mitigations . 22

6 Threats and assumptions . 24
6.1 System components . 24

6.1.1 Assets . 24
6.1.2 Locations . 25
6.1.3 Actions . 25

6.2 Threats . 26
6.2.1 Attacker reads/uses/copies a certificate. 26
6.2.2 Attacker creates a new certificate trust store for the client. 26
6.2.3 Attacker reads/uses/copies client’s certificate trust store. 26
6.2.4 Attacker updates client’s certificate trust store. 26
6.2.5 Attacker deletes client’s certificate trust store or parts of it. 27
6.2.6 Attacker creates data, which is sent to be signed. 27
6.2.7 Attacker reads/uses/copies data, which is sent to be signed. 28
6.2.8 Attacker updates data, which is sent to be signed. 28
6.2.9 Attacker creates a new hash, which is sent to be signed. 29
6.2.10 Attacker reads/uses/copies the hash, which is sent to be signed. 30

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

3 / 65

6.2.11 Attacker updates the hash, which is sent to be signed. 30
6.2.12 Attacker creates a signed hash, which is signed with client’s private key. 30
6.2.13 Attacker reads/uses/copies the signed hash, which is signed with client’s

private key. 31
6.2.14 Attacker updates the signed hash, which is signed with client’s private key. 31
6.2.15 Attacker creates a signed container. 31
6.2.16 Attacker reads/uses/copies the contents of a signed container. 31
6.2.17 Attacker creates a new authentication challenge. 31
6.2.18 Attacker reads/uses/copies the authentication challenge. 32
6.2.19 Attacker updates the authentication challenge. 32
6.2.20 Attacker deletes the authentication challenge. 33
6.2.21 Attacker creates a new unsigned authentication token or its hash. 33
6.2.22 Attacker reads/uses/copies the unsigned authentication token or its hash. 34
6.2.23 Attacker updates the unsigned authentication token or its hash. 34
6.2.24 Attacker deletes the unsigned authentication token or its hash. 34
6.2.25 Attacker creates a signed authentication token. 34
6.2.26 Attacker reads/uses/copies the signed authentication token. 34
6.2.27 Attacker updates a signed authentication token. 35
6.2.28 Attacker deletes a signed authentication token. 35
6.2.29 Attacker reads/uses/copies the OCSP response. 35
6.2.30 Attacker creates a session cookie. 36
6.2.31 Attacker reads/uses/copies a session cookie. 36
6.2.32 Attacker updates a session cookie. 37
6.2.33 Attacker deletes a session cookie. 37

6.3 Threats that are out of scope . 38
6.3.1 Attacker manages to create a valid authentication (or signing) private key

for the client. Location does not matter here.
[Out of scope] . 38

6.3.2 Attacker manages to read/use/copy the client’s authentication (or signing)
private key. Location does not matter here.
[Out of scope] . 38

6.3.3 Attacker manages to update client’s authentication (or signing) private
key. Location does not matter here.
[Out of scope] . 38

6.3.4 Attacker manages to delete client’s authentication (or signing) private key.
Location does not matter here.
[Out of scope] . 39

6.3.5 Attacker creates (guesses) client’s PIN code(s) in client’s device.
[Out of scope] . 39

6.3.6 Attacker reads (learns)/uses/copies client’s PIN code(s) in client’s device.
[Out of scope] . 39

6.3.7 Attacker updates (changes) client’s PIN code(s) in client’s device.
[Out of scope] . 39

6.3.8 Attacker deletes (locks) client’s PIN code in client’s device.
[Out of scope] . 40

6.3.9 Attacker creates a valid certificate (signed by a CA) for a selected public
key.
[Out of scope] . 40

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

4 / 65

6.3.10 Attacker updates a valid certificate (signed by a CA) for a selected public
key.
[Out of scope] . 40

6.3.11 Attacker revokes or suspends a certificate (signed by a CA) for a selected
public key.
[Out of scope] . 41

6.3.12 Attacker creates a long term private key for the service provider.
[Out of scope] . 41

6.3.13 Attacker reads/uses/copies service provider’s long term private key.
[Out of scope] . 41

6.3.14 Attacker updates service provider’s long term private key.
[Out of scope] . 41

6.3.15 Attacker deletes service provider’s long term private key.
[Out of scope] . 41

6.3.16 Attacker creates a signing key for the eID CA.
[Out of scope] . 42

6.3.17 Attacker reads/uses/copies eID CA’s signing key.
[Out of scope] . 42

6.3.18 Attacker updates eID CA’s signing key.
[Out of scope] . 42

6.3.19 Attacker deletes eID CA’s signing key.
[Out of scope] . 42

6.3.20 Attacker creates a signing key for the CA issuing TLS certificates.
[Out of scope] . 42

6.3.21 Attacker reads/uses/copies the signing key of the CA issuing TLS certifi-
cates.
[Out of scope] . 42

6.3.22 Attacker updates the signing key of the CA issuing TLS certificates.
[Out of scope] . 43

6.3.23 Attacker deletes the signing key of the CA issuing TLS certificates.
[Out of scope] . 43

6.3.24 Attacker deletes data, which is sent to be signed.
[Out of scope] . 43

6.3.25 Attacker deletes the hash, which is sent to be signed.
[Out of scope] . 44

6.3.26 Attacker deletes the signed hash, which is signed with client’s private key.
[Out of scope] . 44

6.3.27 Attacker updates the contents of a signed container.
[Out of scope] . 44

6.3.28 Attacker deletes the signed container.
[Out of scope] . 44

6.3.29 Attacker creates the OCSP response.
[Out of scope] . 44

6.3.30 Attacker updates the OCSP response.
[Out of scope] . 44

6.3.31 Attacker deletes the OCSP response.
[Out of scope] . 44

6.4 Assumptions that can be satisfied with current technology 46

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

5 / 65

6.4.1 Key length . 46
6.4.2 Keys are randomly generated . 46
6.4.3 ID-card keys are generated in the card 46
6.4.4 ID-card private keys do not leak . 46
6.4.5 ID-card keys can not be deleted . 46
6.4.6 Only strong cryptosystems with sufficient key lengths are used 46
6.4.7 Quantum computers are not available 47
6.4.8 Attacker with superuser access has complete access 47
6.4.9 Collision resistance property can not be broken 47
6.4.10 Second preimage resistance property can not be broken 47
6.4.11 The authentication challenge can not be guessed or predicted 47
6.4.12 Session cookie is not predictable . 47
6.4.13 Communication channel is protected by TLS 47
6.4.14 Secondary channel to inform the user about card use 48

6.5 Assumptions that can not be satisfied with current technology 49
6.5.1 Card readers with PIN pad and trusted preview 49
6.5.2 Token Binding . 49
6.5.3 Browser extension can access details of TLS connection 49
6.5.4 Using separate key pairs for authentication, encryption and authorization 49

7 More topics for discussion . 51
7.1 Server-side security . 51
7.2 End user device security . 51
7.3 Insecure wireless input devices . 51
7.4 WebUSB vulnerabilities . 51
7.5 Modelling the runtime environment . 51

A ProVerif analysis . 53
A.1 Authentication Protocol . 54

A.1.1 Protocol model . 54
A.1.2 Security analysis . 57

A.2 Signing Protocol . 61
A.2.1 Protocol model . 61
A.2.2 Security analysis . 63

A.3 Summary . 64

Bibliography . 65

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

6 / 65

1 Executive summary

Estonian State Information Agency (RIA) has initiated a process to update the ID-card (smart
card) support in browsers to address various stability and support issues the current TLS client
certificate authentication (CCA) based solution has. A team of researchers and developers has
created an initial architecture draft for the new solution1, which will be named Web eID. The
purpose of the current document is to analyse this architecture from the security point of view.

To do this in a systematic way, we fixed the scope of the analysis, identified all the relevant digital
assets present in the architecture, and considered possible actions an attacker could do (Create,
Read/Use/Copy, Update, Delete) on them. As a result, this document lists the assumptions that
the proposed solution relies on, along with the threats and mitigation measures.

The main scope of the analysis was limited to the components that are in the focus of develop-
ment during the current project (server application, browser extension and Web eID native ap-
plication). Note, however, that the full ecosystem is much wider, including the client and server
platforms, trust service providers, browsers, etc. There are many potential threats emanating
from them, and therefore it should be regularly reviewed if these threats are handled and whether
additional mitigation measures should be implemented.

The biggest change in the Web eID architecture compared to the previously used Open eID is
the way how clients are authenticated. It is no longer possible to use client side authentication
provided by TLS. While the change adds stability, it also affects the security of authentication.
Not all configurations of the new Web eID architecture protect against man-in-the-middle attacks
where the attacker is simultaneously able to do DNS-spoofing and provide a valid TLS certificate
for client’s browser.

Web eID was designed to allow the service provider to select between two protection profiles
based on the level of acceptable risk. The first profile is easy to implement and protect, but is
vulnerable to the aforementioned powerful man-in-the-middle attack. While in theory the stronger
profile provides protection against powerful man-in-the-middle attacks during the authentication
phase, it is non-trivial to implement. Currently only Mozilla’s Firefox browser provides an API that
allows to apply the second protection profile on the client side. Even if implemented, the limita-
tions of browser API-s allow to protect only the authentication phase against the aforementioned
man-in-the-middle attacks. Such attacks usually require a certificate authority to be compro-
mised and are therefore unlikely to happen. However, the same risk applies to connections that
are being legitimately monitored by corporate proxies.

As the majority of mainstream browsers are built on top of Google’s Chromium, Google’s repre-
sentative was contacted in order to inquire about the possibility extend Chromium’s API so that
the aforementioned man-in-the-middle attacks could be avoided. The representative of Google

1https://github.com/open-eid/browser-extensions2

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

7 / 65

https://github.com/open-eid/browser-extensions2

responded that such measures are not in plan and are most likely not going to be implemented.
One of the reasons is that a significant percentage of web traffic goes through corporate middle-
boxes2, which need to perform man-in-the-middle interception in order to scan traffic [3]. Corpo-
rate scanning of TLS traffic falls under the class of powerful man-in-the-middle attacks and thus
affects Web eID. Therefore, corporate proxies become a single point of failure for Web eID in
case the second protection profile is not implemented. An attacker or a compromised employee
abusing the corporate proxy can intercept the session tokens and can replace the hash values
that are being sent to be digitally signed by the client.

The second downside of the new architecture compared to TLS-CCA lies in the difficulty of pre-
venting session hijacking attacks. TLS-CCA based architecture makes it possible to prevent
session hijacking (i.e., copying of session identifiers), but there is no straightforward way to do
that in the new architecture. This is a common problem, which is present in most of the main-
stream authentication technologies as described in Section 4.2. This can be a problem in the
following cases:

• a vulnerability in the web service or browser gives access to session identifiers,

• an attacker has temporary local access and can copy the session identifier,

• when HTTPS interception (proxy or middlebox) is used to monitor or mediate the traffic,
the session identifier may leak.

2https://blog.cloudflare.com/monsters-in-the-middleboxes/

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

8 / 65

https://blog.cloudflare.com/monsters-in-the-middleboxes/

2 Introduction

2.1 Terminology

• Browser extension – third party code that is integrated with the browser API-s.

• Certificate – a file that binds the public key with the identity of the key owner. In this
document, we are only considering certificates that are issued by certificate authorities.

• Certificate authority (CA) – a trusted third party, who issues certificates to end users (citi-
zens or organisations) or assigns trust to lower level certificate authorities.

• eID – electronic identification, a digital solution for proof of identity of citizens or organisa-
tions.

• Local attacker – an attacker who has either physical or remote access to the user’s com-
puter.

• Local attacker with administrative permissions – an attacker who can do everything that the
administrator can do. Such an attacker can be considered to control the whole computer,
including what is displayed on the screen.

• Local attacker with user permissions – an attacker who does not have access to function-
alities that require administrative permissions. Such an attacker can perform unprivileged
system calls, which can differ depending on the operating system.

• Man-in-the-middle attack (MITM) – an attack where the attacker relays messages between
two parties. Thus an attacker can eavesdrop and modify the exchanged messages.

• Powerful attacker – an attacker who can get a valid certificate for a selected domain and
who is also able to perform DNS spoofing. This would enable running a man-in-the-middle
attack.

• Service provider – the party who is running the web service / server application that pro-
vides the option for the client to authenticate or issue digital signatures by using the new
browser extension.

• TLS – Transport Layer Security, a cryptographic protocol for secure Internet communica-
tion.

• OCSP – Online Certificate Status Protocol, an Internet protocol used for obtaining the
revocation status of a X.509 digital certificate.

• Web service – the service which the client is authenticating to or which asks the client to
give a digital signature with the Web eID browser extension.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

9 / 65

2.2 The scope of the analysis

The new browser extension allows the web services to authenticate users and ask them to is-
sue signatures. Thus, the main scope of the analysis contains the browser, native Web eID
application, the service provider and their interaction (see Figure 1).

Figure 1. Themain scope of the current analysis is highlighted and covers the interaction between
the server application, browser and native Web eID application. The authentication and signing
protocols are described in the Web eID architecture draft: https://github.com/open-eid/
browser-extensions2.

However, security of the new architecture also depends on multiple external factors that are not
in the main scope, so at times we also need to talk about the extended scope.

For example, the user’s device has to be trusted to behave correctly. It is difficult to protect user’s
digital identity while the device is infected and controlled by malware. Therefore, protecting user
environment is mostly the responsibility of the user or the corresponding organisation. Although
there are technologies that can protect the user in a malicious environment, they usually rely on
additional hardware. Providing additional hardware for the end users is out of the scope of this
project. Still, it may also be possible to apply software based mitigation measures to make it
more difficult to attack the user environment. For example, an attack is more difficult if it requires
superuser permissions.

In addition, the certificate authorities that issue eID certificates and TLS certificates for web

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

10 / 65

https://github.com/open-eid/browser-extensions2
https://github.com/open-eid/browser-extensions2

services have to be trusted. The CA has to protect its signing key from third parties to prevent it
being misused to issue fraudulent certificates. The CA also has to properly authenticate the party
who is requesting a certificate. There are specific requirements which the certificate authorities
have to follow. The security of the CA-s is out of the scope of this project. Thus, we assume
that the certificate authorities behave according to their requirements and that they are properly
audited.

Although the main scope of this analysis does not cover the CA-s and the local computer, the
approach that we chose for the analysis tries to list all the relevant threats that could affect the se-
curity of authentication or signing in the new architecture. Therefore, we also list threats caused
by entities that are out of scope of the Web eID architecture. Based on this information, the
overall threat landscape can be seen. While the mitigation of external threats is not in the scope
of this project, these threats could be mitigated by organisational measures or by third parties
who are responsible for the corresponding components.

We recommend to conduct a follow-up study to investigate the threats to the end user from an
untrusted computing device. It is important to understand how a compromised local machine
can be abused depending on which level of access the attacker has to the system. As different
operating systems have different API-s and permission systems, this study should be performed
for each supported operating system.

2.3 Security objectives and requirements

2.3.1 Security of authentication

On a high level, authentication protocols need to achieve the following properties to be consid-
ered secure [2].

Entity authentication: the service provider obtains a reasonable level of assurance that the
entity requesting authentication is who they claim to be.

Freshness: the service provider obtains a reasonable level of assurance that the
authentication request is recent.

Typically, we want the authentication to be mutual, i.e. we also require the following property.

Origin authentication: the user obtains a reasonable level of assurance that the service he/she
is authenticating to is who they claim to be.

In order to satisfy these requirements, several lower level properties must hold.

Credential validity: it must be possible to establish whether the credentials used for
authentication are valid.

Authorised usage: it must be hard to use the credentials in an unauthorised manner.

Impersonation resistance: the protocol should provide reasonable level of assurance against
malicious impersonation attacks (e.g. man-in-the-middle and ses-
sion hijacking).

Cryptographic strength: the algorithms in use must withstand the attempts to violate the
cryptographic properties.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

11 / 65

2.3.2 Security of signing

On a high level, signature protocols need to achieve the following properties to be considered
secure.

Entity authentication: the signature should identify the signing person/entity with high level of
assurance.

Non-repudiation: the entity who has given the signature is unable to deny neither the fact
of signing, nor the knowledge of the signed content (together with all its
possible binding implications) after the fact.

Data integrity: the party verifying the signature gets assurance that the data under the
signature has not been changed between the moments of signing and
verification.

In order to satisfy these requirements, several lower level properties must hold.

Credential validity: it must be possible to establish whether the credentials used for sign-
ing were valid at the time of signing.

Authorised usage: it must be hard to use the credentials in an unauthorised manner.

Cryptographic strength: the algorithms in use must withstand the attempts to violate the cryp-
tographic properties.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

12 / 65

3 Technologies

This chapter takes a look at the technologies used, criteria of choosing them and how they help
to mitigate the threats identified in this report.

3.1 Arguments for choosing OpenID Connect ID Token format and custom pro-
tocol

Web eID has chosen OpenID X509 ID Token and a custom protocol as means of communicating
the authentication result. The obvious alternative to the chosen protocol would be full WebAuthn
support, but there are strong arguments against it:

1. WebAuthn is overly complicated and not practical to implement for small e-service
providers. Support by different web application frameworks is not (yet) sufficient.

2. Specification is long (167 pages) and requires deep understanding of the technology, yet
its first mentioned audience is "Relying Party web application developers". This does not
sound viable, as Relying Party web application developers cannot be expected to be ex-
perts of such protocols, except in large organisations.

3. It uses public key as end user identifier (not identifiers bound via PKI certificates) and is
built around the "key pair per service" model. Using the same ID card key for all services
may have strange implications (requires further analysis).

4. The previous point also means that replacing an ID-card (and thus the keys) may have
strange implications and may cause user lock-outs.

5. It requires device attestation. Even though this can be skipped, device attestation does
not conceptually apply to the eID ecosystem.

Based on that, OpenID X509 ID Token is the superior option:

1. It is based on a standard container format, offering digital signatures, symmetric integrity
protection and authenticated encryption.

2. It offers hypothetical future compatibility with OpenID Connect, or at least offers a cheaper
migration path, as that technology is already known for e-service developers.

3.2 Token Binding

Token Binding is a proposed extension for TLS using a key pair also on client’s side of the con-
nection3, thereby being similar to TLS-CCA. Token Binding prevents strong man-in-the-middle

3https://tools.ietf.org/html/rfc8471

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

13 / 65

https://tools.ietf.org/html/rfc8471

attacks in cases where an attacker has access to a valid certificate for the target domain. In ad-
dition, it prevents session tokens or session cookies from being reused in another TLS session,
thereby effectively preventing session hijacking attacks. This is achieved by cryptographically
binding the session identifier to the randomness used in the corresponding TLS session. More
specifically, the exported keying material (EKM)4 from the TLS session is signed by client’s Token
Binding key.

When Token Binding is used together with TLS 1.2 (or older versions), then also the Extended
Master Secret extension (RFC 7627)5 and TLS Renegotiation Indication (RFC 5746)6 extension
must be used7.

One downside of Token Binding is that it would make it difficult to debug and monitor connections
as HTTPS interception would break. Other concerns like using Token Binding for DRM can be
found from Google’s discussion boards8,9. Such concerns resulted in Google Chrome dropping
the support for Token Binding in 2018. From the mainstream browsers it is only supported by
Edge10. However, the work on the Token Binding standard is continuing.

It is difficult to build a public service on top of Token Binding until it is not supported bymainstream
browsers. Thus, alternative technologies should be used to provide similar protective measures.
For example, Certificate Transparency is a technology that allows to detect powerful man-in-the-
middle attacks.

3.3 Certificate Transparency

Certificate Transparency (CT)11 is a protocol that is designed to limit the amount of damage
from mistakenly or maliciously issued certificates. It works by creating public append-only logs
of CA issued certificates, which allows to publicly monitor and audit new certificates. Thereby,
the domain owner and the CA can monitor the logs and detect if a new (malicious) certificate is
issued for a given domain.

Google Chrome started to enforce CT for new (public) certificates that were issued since
April 30th 2018.12 Certificates that were issued before that date got an exception and can
still be used. However, in case a new certificate is issued without the support for CT, visit-
ing the corresponding web site with Google Chrome results in a full page error with the code
net::ERR_CERTIFICATE_TRANSPARENCY_REQUIRED. Thus, in order for a website to be com-
patible with Google Chrome it has to comply with CT. As Google Chrome has the largest market
share13, it is inevitable that CT will be supported by almost all websites, which use TLS. In addi-
tion to Google Chrome, Safari also started to enforce CT for the certificates issued since October

4https://tools.ietf.org/html/rfc5705
5https://tools.ietf.org/html/rfc7627
6https://tools.ietf.org/html/rfc5746
7https://tools.ietf.org/html/rfc8471#section-4.2
8https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/OkdLUyYmY1E/

w2ESAeshBgAJ
9https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/r4zE8RKB6l4/

0VNjdZRQAAAJ
10https://docs.microsoft.com/en-us/windows-server/security/token-binding/

introducing-token-binding
11https://tools.ietf.org/html/rfc6962
12https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/

iMFmpMEkAQAJ
13https://gs.statcounter.com/browser-market-share

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

14 / 65

https://tools.ietf.org/html/rfc5705
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/rfc5746
https://tools.ietf.org/html/rfc8471#section-4.2
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/OkdLUyYmY1E/w2ESAeshBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/OkdLUyYmY1E/w2ESAeshBgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/r4zE8RKB6l4/0VNjdZRQAAAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/r4zE8RKB6l4/0VNjdZRQAAAJ
https://docs.microsoft.com/en-us/windows-server/security/token-binding/introducing-token-binding
https://docs.microsoft.com/en-us/windows-server/security/token-binding/introducing-token-binding
https://tools.ietf.org/html/rfc6962
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://gs.statcounter.com/browser-market-share

15th 2018.14 In 2019, a study was performed to measure the adaption and error rate of CT [7].
Telemetry from Google Chrome was used in that study and it showed that in the beginning of
February 2018, 71.1% of requests for which CT would apply were CT-compliant. The study re-
ported that by September 2018, CT-compliance was required for 42.6% of connections and out
of these 99.7% of HTTPS requests were CT-compliant15.

Service providers can force supporting browsers to strictly follow CT by using Expect-CT
header16. For example, Google Chrome can be forced to follow CT also for certificates that were
issued before April 30th 2018 by using Expect-CT header. That way it is possible to prevent
attacks with certificates that were issued before April 30th 2018.

One open issue with CT is its support by other browsers. Until all major browsers will start to
enforce CT, it can not prevent targeted attacks. The other issue is that the service providers and
the CA-s have to be active to monitor and detect maliciously issued certificates so that they could
be revoked in time.

One way how CT can be implemented is by using OCSP stapling (see Section 3.4). However, the
main benefit of using OCSP stapling is to make sure that information about certificate revocation
is sent to the client’s browser.

3.4 OCSP stapling

OCSP is used to check whether a given certificate is valid at a given time point. However, there
are multiple problems with client side OCSP queries, one of them being the leakage of private
information regarding the web sites the client is using.

OCSP queries are relevant in the new architecture in two ways. First one is explicitly illustrated in
Figure 1 where the service provider checks if the client certificate is valid. Second, the client can
also check whether the service provider’s certificate is valid while initiating the TLS connection
(however, some browsers skip the OCSP queries).

The validity check for the service provider’s certificate is required to avoid man-in-the-middle
attacks in case service provider’s private key has leaked. However, currently browsers use soft
fail in case OCSP service is briefly unavailable or the query is blocked. In these cases browsers
proceed with the TLS connection, although OCSP response is missing. Therefore, by performing
client side OCSP queries, the client can not get the guarantee that the certificate of the web site
is valid. In addition, client side OCSP requests violate privacy of the user as the OCSP provider
will find out when and which web sites the corresponding client visits.

The solution to both of these issues is to use OCSP stapling17. This allows the service providers
to deliver the OCSP response to the client together with the TLS certificate. To prevent down-
grade attacks, this functionality must be enforced by setting OCSP Must-Staple flag in the cer-
tificate. This functionality is independent of the Web eID architecture and has to be separately
configured by the service provider. Although OCSP stapling may seem to be out of scope regard-

14https://support.apple.com/en-us/HT205280
15https://www.ieee-security.org/TC/SP2019/SP19-Slides-pdfs/Emily_Stark_-_3-Emily_

Stark-Does_Certificate_Transparency_Break_the_Web-_Measuring_Adoption_and_Error_Rate_
(1).pdf

16https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expect-CT
17https://tools.ietf.org/html/draft-hallambaker-tlsfeature-05

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

15 / 65

https://support.apple.com/en-us/HT205280
https://www.ieee-security.org/TC/SP2019/SP19-Slides-pdfs/Emily_Stark_-_3-Emily_Stark-Does_Certificate_Transparency_Break_the_Web-_Measuring_Adoption_and_Error_Rate_(1).pdf
https://www.ieee-security.org/TC/SP2019/SP19-Slides-pdfs/Emily_Stark_-_3-Emily_Stark-Does_Certificate_Transparency_Break_the_Web-_Measuring_Adoption_and_Error_Rate_(1).pdf
https://www.ieee-security.org/TC/SP2019/SP19-Slides-pdfs/Emily_Stark_-_3-Emily_Stark-Does_Certificate_Transparency_Break_the_Web-_Measuring_Adoption_and_Error_Rate_(1).pdf
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Expect-CT
https://tools.ietf.org/html/draft-hallambaker-tlsfeature-05

ing the new architecture, it is actually relevant to protect the end users against man-in-the-middle
attacks.

Just relying on OCSP stapling and Certificate Transparency is not sufficient to prevent man-in-
the-middle attacks as they are not yet universally supported. Thus, Web eID architecture contains
its own mitigation measures to prevent man-in-the-middle attacks as described in Section 5.2.
However, these measures do not fully eliminate the threat from man-in-the-middle attacks as
client’s session can span multiple TLS sessions as described in Section 3.5.

3.5 TLS session resumption

The proposed Web eID browser extension architecture allows to use multiple TLS connections
in the same authenticated session. For example in Section 5.2 it is described that during the
authentication phase two different TLS connections are used to make queries to the service
provider. A new TLS session could also be initiated when the client temporarily loses Internet
connection, however, this does not invalidate the authenticated session.

Therefore, MITM protection should be provided not only for the initial authentication query, but
also for negotiating a new TLS session. This is a non-trivial functionality, which is not imple-
mented in the first version of Web eID. The reasoning for that is given in Section 5.4.

One possible solution to this problem is to rely on TLS session resumption and force re-
authentication when resumption is rejected. Whether this approach could be applied in prac-
tice depends on the server side architecture, i.e., whether the information about TLS session
resumption is available to the web service.

In the following we consider only TLS 1.2 and TLS 1.3 as mainstream browsers will end the
support for TLS 1.0 and TLS 1.1 for regular users in the beginning of 2020.18,19,20

TLS resumption in TLS 1.2 is provided either by SESSION ID (RFC 5246)21 or by SESSION
tickets (RFC 5077)22. TLS 1.3 replaces these with resumption based on pre-shared keys (RFC
8446)23.

However, in order to prevent MITM during TLS resumption, the extended master secret extension
(RFC 762724) must be used. This extension ties the master secret to the hash of the messages
sent during the handshake. Thus, it prevents MITM that would negotiate two TLS sessions with
the same master secret.

18https://blog.mozilla.org/security/2018/10/15/removing-old-versions-of-tls/
19https://blogs.windows.com/msedgedev/2018/10/15/modernizing-tls-edge-ie11/
20https://webkit.org/blog/8462/deprecation-of-legacy-tls-1-0-and-1-1-versions/
21https://tools.ietf.org/html/rfc5246#appendix-F.1.4
22https://tools.ietf.org/html/rfc5077
23https://tools.ietf.org/html/rfc8446#page-15
24https://tools.ietf.org/html/rfc7627

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

16 / 65

https://blog.mozilla.org/security/2018/10/15/removing-old-versions-of-tls/
https://blogs.windows.com/msedgedev/2018/10/15/modernizing-tls-edge-ie11/
https://webkit.org/blog/8462/deprecation-of-legacy-tls-1-0-and-1-1-versions/
https://tools.ietf.org/html/rfc5246#appendix-F.1.4
https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc8446#page-15
https://tools.ietf.org/html/rfc7627

4 Compatibility with TLS Client Certificate
Authentication

TLS Client Certificate Authentication (CCA) provides mutual authentication and thereby gives
some additional security guarantees compared to one-way TLS, where only the server is au-
thenticated. Below follows a list of some of the relevant properties and security features that
may be offered by TLS-CCA:

• In the case of mutual authentication, the client signs all previous handshake messages
that were exchanged during TLS session negotiation. The signed result is delivered to the
server in the CertificateVerify message. Thus, the signature covers, among other
things, the randomness selected by the server, randomness selected by the client, the
server’s certificate and the encrypted pre-master secret that the client chose25.

– Client can not be successfully manipulated by a man-in-the-middle attack even when
the middleman has obtained a fraudulent certificate for a service provider as the
server’s certificate and pre-master key are signed by the client.

– It would still be possible for the middleman to successfully interact with the client,
however, in this case the messages could not be relayed to the real server.

• TLS-CCA allows to bind the whole session to client’s certificate if TLS-CCA is forced also
after the login phase. This requires the service provider to request authentication for each
request. However, this forces keeping the authentication security context activated on the
ID-card in Open eID architecture after initial PIN1 entry, which poses a security threat of
its own (otherwise the user would be required to enter PIN1 for every new HTTPS request,
including requests for page assets like images and scripts, which would not be feasible).

– It gives protection against session hijacking. E.g., phishing or using XSS to steal a
session cookie becomes irrelevant as a third party can not use the cookie.

4.1 Comparison of TLS-CCA with other common authentication architectures

Many authentication systems are using signed tokens. However, in case the token is not bound
to the TLS session, it is not possible to prevent an attacker from using a leaked session identi-
fier. In such systems, session hijacking can not be prevented once the session identifier leaks.
TLS-CCA-based Open eID is an exceptional case which, when configured correctly, can prevent
session hijacking even when a valid session identifier leaks. However, the Web eID architec-
ture along with other commonly used authentication systems like OpenID Connect, Mobile-ID,
Smart-ID and WebAuthn (without Token Binding) is not able to prevent the session token from

25https://tools.ietf.org/html/rfc5246

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

17 / 65

https://tools.ietf.org/html/rfc5246

being reused in a different machine in case the session identifier leaks. Therefore, the threat of
session hijacking must be mitigated by taking other measures against session identifier leakage.

To prevent MITM attacks, the other communication party has to be authenticated. TLS-CCA
is based on mutual authentication and, when configured correctly, prevents MITM attacks. In
case of Web eID, the service provider can decide how well the authentication phase is protected
against MITM attacks. Based on that decision either origin validation or certificate validation
can be applied, which are described in Sections 5.1 and 5.2. However, the MITM protection
only applies to the authentication phase. The following TLS sessions which reuse the same
session identifier are not protected against MITM attacks. The same observation holds true
for other authentication systems which do not re-authenticate new TLS sessions after the initial
client authentication. Still, neither the TLS-CCA based Open eID architecture nor the Web eID
architecture can stop an attacker who has obtained a proper domain certificate from successfully
interacting with the client. However, Certificate Transparency can mitigate such attacks, along
with most MITM attacks against TLS regardless of the used architecture.

Client’s private key is usually protected with a second authentication factor which unlocks the
access to it. In the case of Open eID, Web eID, Mobile-ID and Smart-ID, access to the private key
operations is restricted by requiring a PIN code. However, there is no straightforward mechanism
to prevent the PIN code from being read in case malware has infected the corresponding device.
Although in case of Open eID and Web eID it is possible to use card readers with a dedicated
PIN-pad, such readers are not currently available on the local market and there are very limited
options to get such hardware from the global market.

In case user’s device is controlled by malware, the question arises whether the malware can use
the authentication or signing functionalities without user interaction. When access to the private
key operations is protected with a PIN code, the question is whether the malware is able to use
the corresponding API without the user interaction. This is not possible when ID card is used
with a PIN-firewalled PIN-pad-based reader. But when the smart card is directly connected to
the infected device, the answer is not straightforward and depends on the local API-s and of the
operating system in use. Thus, we give a recommendation in Section 7.5 to further study such
issues.

4.2 Session hijacking attacks

The session identifier acts as a shared secret between the client and the service provider so that
the service provider can link the user to the session. Thus, after a successful authentication,
the user is assigned a session identifier. As usually the user is authenticated once during the
session, it is assumed that the protective measures are sufficient to protect the session identifier
from being leaked during an active session. However, when an attacker can somehow access
an active session identifier, it can lead to a session hijacking attack.

Session hijacking is an attack which allows an attacker to access the victim’s active session
by reusing the captured session identifier (e.g., cookie, token), which is linked to the victim.
Once the attacker has obtained access to the session identifier, it is difficult to prevent the attack
as most of the mainstream authentication protocols/standards do not offer protection against
session hijacking.

In order to prevent session hijacking, the service provider would have to be able to verify the
identity of the client by other means besides the session identifier. The standard approach is to

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

18 / 65

use public key cryptography by asking the client to prove that it can use its secret key. The other
approaches like matching client’s IP and user agent, or frequently changing session identifiers
are hacks, which are used to make the attack more difficult26.

The two well known technologies, which use public key cryptography to prevent session hijacking
attacks, are TLS-CCA, which is described in the beginning of Chapter 4, and Token Binding,
which is briefly described in Section 3.2. Other authentication technologies like Mobile-ID27,
Smart-ID28, PIN-calculator (passcode device / security token), or OpenID Connect are only used
during the authentication phase, and after that the session identifier is usually protected by TLS.
WebAuthn29 and FIDO2 can prevent the session hijacking attacks when used together with Token
Binding30. However, Token Binding is currently not supported by any of the mainstream browsers
as discussed in Section 3.2. Therefore, TLS-CCA is currently the only mainstream technology
that provides sufficient protection against session hijacking.

Although the mainstream authentication technologies do not prevent session hijacking on their
own, the threat can be mitigated in most cases (except for a targeted attack) by using proper
configuration and security measures to prevent the leakage of the session identifier. There are
four main ways for accessing the session identifiers:

• malware on victim’s device,

• cross-site scripting vulnerability on the service provider’s web site,

• session fixation vulnerability,

• vulnerability which allows to intercept the traffic that contains the session identifier.

To prevent session fixation, the service provider has to update the session identifier after the user
has authenticated. The session identifier has to be sufficiently random to prevent it from being
guessed. The session identifier must be transported between the client and the server over a
channel that is protected by TLS. However, the used TLS version and configuration also affect
the security. The service provider’s web site must have protective measures that prevent cross-
site scripting attacks by properly escaping and encoding user input. Building such functionality
is non-trivial, and thus it is usually provided by the framework which is used to build the web
site. However, the protective measures are not necessarily active by default, and thus may need
to be manually switched on. To offer additional protection against cross-site scripting and other
common vulnerabilities, the session cookie has to have the following flags: HttpOnly, Secure,
SameSite31. Unfortunately, the service provider can not protect user’s session in case user’s
device is infected by malware.

26https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.
html#binding-the-session-id-to-other-user-properties

27https://www.id.ee/index.php?id=36881
28https://www.smart-id.com/
29https://www.w3.org/TR/webauthn/
30https://fidoalliance.org/fido-technote-the-growing-role-of-token-binding/
31https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.htm#

security-risks

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

19 / 65

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#binding-the-session-id-to-other-user-properties
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#binding-the-session-id-to-other-user-properties
https://www.id.ee/index.php?id=36881
https://www.smart-id.com/
https://www.w3.org/TR/webauthn/
https://fidoalliance.org/fido-technote-the-growing-role-of-token-binding/
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.htm#security-risks
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.htm#security-risks

5 Protection against man-in-the-middle
attacks

The proposed architecture specifies two ways of how the service provider can configure the
protection against man-in-the-middle attacks. The simpler method, which is briefly described in
Section 5.1 is based on origin validation and is therefore easy to implement, but this comes with
a higher risk for an attack. Origin validation does not protect against powerful man-in-the-middle
attacks where the attacker is simultaneously able to do DNS-spoofing and provide a valid TLS
certificate for client’s browser.

The alternative method, which is described in Section 5.2 forces the client to sign the service
provider’s certificate, thereby allowing the service provider to detect interference in case a wrong
certificate is signed by the client. While in theory the certificate validation based method provides
protection against powerful man-in-the-middle attacks during the authentication phase, it is non-
trivial to implement and can currently be used only with Firefox.

We also describe a third approach in Section 5.3, which is based on the service provider sign-
ing the challenge, but this method is not implemented in the new architecture. Regardless of
the chosen architecture, some risks regarding MITM attacks remain. These are described in
Section 5.4 along with possible mitigation measures.

Therefore, the service provider should make the choice of the protective measures based on a
risk analysis.

5.1 Origin validation

The origin validation architecture is based on WebAuthn32 authentication process. In WebAu-
thn, the client has to sign the challenge sent by the web service along with the origin, i.e., the
hostname of the web service. Thus, a man-in-the-middle attack should be prevented by the web
service who checks that the correct origin is signed by the client.

However, an attacker who has access to a maliciously issued certificate for the given web ser-
vice and is also able to perform DNS spoofing can easily bypass origin validation. Such attacks
usually require a certificate authority to be compromised and are therefore unlikely to happen.
However, the same risk applies to connections that are being legitimately monitored by corporate
proxies. With such an attack the whole authenticated session is vulnerable and the correspond-
ing communication can be intercepted and modified by the attacker. The attack could be initiated
for any new TLS session negotiation in order to capture the session identifier that was previously
created when the client authenticated to the web service. In addition, the malcious man-in-the-

32https://www.w3.org/TR/webauthn-1/

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

20 / 65

https://www.w3.org/TR/webauthn-1/

middle attacker could replace the hash value that is being sent to be digitally signed by the client
browser, thereby creating a risk for the client to blindly issue a digital signature.

Asmentioned previously, the probability of a certificate authority being compromised is low. How-
ever, the main risk comes from local man-in-the-middle attacks as origin validation does not de-
tect and prevent a local MITM done by a middlebox, antivirus or malware. Therefore, in case of
origin validation, corporate proxies become a single point of failure. An attacker or a compro-
mised employee abusing the corporate proxy can intercept the session tokens and can replace
the hash values that are being sent to be digitally signed by the client.

It is important to note that Certificate Transparency may not apply to locally issued certificates
as it is in the case of Google Chrome33. Thus, it is possible to debug origin validation based
architecture with a MITM based testing tool like Burp Suite34.

Although the threat of man-in-the-middle attack is not fully mitigated, the approach may be suffi-
cient for web services that do not require the highest level of security. In addition, the threat can
be partially mitigated by relying on Certificate Transparency.

5.2 Certificate validation

The certificate validation architecture takes origin validation as a basis and adds protection
against powerful man-in-the-middle attacks where the attacker is simultaneously able to do DNS-
spoofing and provide a valid TLS certificate for client’s browser. With this approach the client
signs the challenge, origin and the fingerprint of the certificate of the corresponding web service.

The web service must check if the signed information received from the client contains the correct
certificate fingerprint. In case it does, the client used the correct certificate to establish the TLS
connection. When the signed fingerprint does not match, the server has detected an attack and
aborts the connection.

The difficulty with this approach lays in proxies which terminate the TLS connection. Multiple
TLS certificates may be available for a given domain. The web service has to get access to the
correct TLS certificate in order to verify the certificate fingerprint. Thus, the service provider has
to make sure that the certificate is both available and up to date to prevent self inflicted denial of
service attack in case the TLS certificate is replaced.

This approach prevents the usage of local MITM by a middlebox, antivirus or malware during
the authentication phase. Therefore, certificate validation based architecture offers protection
against local interception, which offers higher level protection than mainstream authentication
technologies. This measure can also be provided by certificate pinning or by using TLS-CCA.
However, the downside is that the information exchanged during authentication phase can not
be easily debugged with a MITM based testing tool like Burp Suite35.

While certificate validation based authentication protects against powerful MITM attacks, it does
this only during the authentication phase. Even protecting the authentication queries is non-
trivial as the browser extension uses two different TLS sessions to initiate the authentication and
to deliver the signed response to the service provider. Thus, the extension has to check that the

33https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/
iMFmpMEkAQAJ

34https://portswigger.net/burp
35https://portswigger.net/burp

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

21 / 65

https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://portswigger.net/burp
https://portswigger.net/burp

second TLS session is established with the same party. To do this, the extension has to store a
reference to the previous certificate and check whether the server certificate in the second TLS
connection matches the previously seen certificate. It is crucial that the certificate is validated
before the signed challenge is sent out as otherwise the man-in-the-middle would get access to
the session. Even when this problem is solved, the rest of the authenticated session is vulnerable
to a MITM attack in case the same session identifier is reused in a new TLS connection.

Currently only Mozilla’s Firefox provides an API that allows to apply the certificate validation
based protection profile. As the majority of mainstream browsers are built on top of Google’s
Chromium, Google’s representative was contacted in order to inquire about the possibility extend
Chromium’s API so that the aforementioned man-in-the-middle attacks could be avoided. The
representative of Google responded that such measures are not in plan and are most likely not
going to be implemented. One of the reasons is that a significant percentage of web traffic goes
through corporate middleboxes36, which need to perform man-in-the-middle interception in order
to scan traffic [3].

5.3 An alternative approach: signing the challenge

MITM attack against the authentication phase could also be mitigated if the service provider
would sign the challenge sent to the client. With this approach, the client must be able to verify
that the signed challenge is either directly or indirectly connected with the TLS certificate. I.e.,
either the challenge is signed by the private key that corresponds to the certificate, or the private
key of the certificate would be used to delegate trust to a new key pair. The idea is to bind the TLS
certificate to the challenge and thereby prevent the MITM from forwarding a different certificate to
the client. In case of a MITM attack, the service provider would be able to verify both signatures
and detect an attack. As this approach requires more configuration from the service provider
to make the private key associated with the TLS certificate available to the service, it is not
implemented in the first version of the new architecture.

5.4 Remaining risks and possible mitigations

As previously mentioned, the proposed architecture is not able to prevent MITM attacks in case a
new TLS session is established after the authentication phase. While there are multiple options
for mitigation, these approaches may not be practically feasible and are not guaranteed to work
in all scenarios.

The simplest option is to rely on Certificate Transparency, which is briefly described in Sec-
tion 3.3. However, Certificate Transparency is not yet supported by all mainstream browsers.
Nevertheless, its preventive aspect deters attacks that scale. Still, targeted attacks can not be
ruled out.

Certificate Authority Authorization (CAA) provides website owners a way to specify in a DNS
record, which certificate authorities are allowed to issue certificates for the corresponding do-
main [4]. The usage of CAA should reduce the risk of certificate authorities accidentally issuing
certificates for an attacker. However, it does not prevent targeted attacks in case a certificate
authority is compromised.

36https://blog.cloudflare.com/monsters-in-the-middleboxes/

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

22 / 65

https://blog.cloudflare.com/monsters-in-the-middleboxes/

In addition, the service provider may only allow one TLS session per authenticated session such
that TLS resumption would be the backup option when the client loses connection. This approach
is technically non-trivial to implement and may not be practical. More information about this
approach can be found in Section 3.5.

The fourth option would be to keep a local reference of the original TLS certificate used during
the authentication phase in the Web eID browser extension. Thus, for each new TLS connection
the fetched certificate should be matched with the previously stored certificate. Implementing
this in practice is non-trivial, and therefore this approach will not implemented in the first version
of the new browser extension.

Currently only Firefox provides an API that allows to query information about the TLS session,
including the used certificate37. To implement local MITM protection, access to such an API is
crucial. However, testing the Firefox API revealed that the certificate information can be queried
only after a request has already been sent. Thus, while the API allows to detect MITM attacks it
can not prevent a request being sent out to the middleman. The implication is that the authen-
tication token can be delivered before detecting the attack. This could be mitigated if the API
would allow to cancel requests based on the queried TLS configuration. However, even detect-
ing a MITM attack is a step forward. The issue does not create a significant new vulnerability
as session hijacking is also possible after the authentication phase as mentioned in Section 5.2.
Thus, to prevent session hijacking the whole authenticated session would have to be protected
against it.

In addition, the service provider also has to make sure that its certificate is revoked in case the
corresponding private key leaks. However, revoking by itself is not sufficient as the information
also has to reach the client as otherwise MITM attack may become possible. Fortunately, OCSP
stapling with the Must-Staple flag resolves this issue. This approach is described in Section 3.4.

37https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/
webRequest/getSecurityInfo

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

23 / 65

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/getSecurityInfo
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/getSecurityInfo

6 Threats and assumptions

This chapter contains the analysis part of this document. We begin by describing the method-
ology used for the analysis. Then the system components relevant for the analysis are listed.
Section 6.2 contains the list of threats that directly affect the Web eID architecture. Section 6.3
lists the threats that are not in the scope of the Web eID architecture but which can affect its
security. Finally, the chapter is concluded by Sections 6.4 and 6.5, which give an overview of
the assumptions that were used in the analysis. These assumptions are classified into two cate-
gories, the first one describes the assumptions that can be satisfied with the current technology,
and the second one the assumptions that can not be satisfied with the current technology.

To create the list of threats in a systematic way, we fixed the scope of the analysis, identified the
relevant digital assets present in the Web eID architecture, and considered possible actions an
attacker could do (Create, Read/Use/Copy, Update, Delete) on them. Based on that we created
a list of threats that covers all possible combinations of assets and the actions the attacker could
do on them. However, by using such methodology also the non-relevant threats are listed. Thus,
some of the listed threats are not relevant for the architecture or are not in the main scope of
this analysis. We still include them for the sake of completeness. In principle it would also be
possible to classify the threats further by also including the location of the attacker. However, we
decided not to do that as for most of the threats the location is fixed by the context.

6.1 System components

6.1.1 Assets

The system has the following (digital) assets:

• client’s authentication key (part of 1st key pair),

• client’s signing key (part of 2nd key pair),

• client’s certificate, containing public key from the ID-card (either from 1st or 2nd key pair),

• client’s certificate trust store (browser or OS based),

• service provider’s long term private key,

• service provider’s certificate, which is signed by a trusted CA,

• eID CA’s signing key, which was used to issue the certificates for the ID-card,

• CA’s signing key, which was used to issue the certificate for the service provider,

• client’s PIN1, which unlocks the authentication key,

• client’s PIN2, which unlocks the signing key,

• data, which client intends to sign,

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

24 / 65

• hash of the data, which client intends to sign,

• signed hash of the data, which client intended to sign,

• container, which contains signed data,

• service provider’s authentication challenge,

• unsigned authentication token,

• hash of the unsigned authentication token,

• signed hash of the authentication token together with the authentication token,

• OCSP response for the client certificate,

• session cookie set by the service provider.

6.1.2 Locations

Events may take place in the following locations:

• service provider’s server,

• communication channel between end-user’s browser and service provider’s server,

• end-user’s browser,

• channel between end-user’s browser and Web eID native application controller compo-
nent38,

• channels between application controller component and libgui, libpcsc, libeid components,

• communication channel, which is used to interface with the smart card,

• firmware / driver of the smart card reader.

6.1.3 Actions

• Create – attacker manages to create a valid asset.

• Read, Use, Copy – attacker gains read-only access to an asset.

• Update – attacker (successfully) modifies an asset.

• Delete – attacker removes an asset either from storage or from communication channel.

38https://github.com/open-eid/browser-extensions2#native-application

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

25 / 65

https://github.com/open-eid/browser-extensions2#native-application

6.2 Threats

6.2.1 Attacker reads/uses/copies a certificate.

The certificate can not be successfully used for authentication and signing without having access
to the corresponding private key.

The certificate itself can be considered to be public information. The TLS certificates of web
sites are public. Although the ID-card certificates contain somewhat private information about
the client these certificates can be publicly queried using the personal identification code. The
signing certificate is also included in the digital signature container (e.g., BDOC, ASiC-E).

However, the client may not want to disclose her identity to the service provider. Thus, the user
has to decide whether the certificate should be sent to the service provider once authentication
is initiated. By bypassing this check the website could track the user without user’s consent. In
addition, the client certificate should be encrypted when it is sent to the server.

Possible mitigations:

• The project documentation states that the implementation must require the user to interact
to choose whether to continue with the authentication process and share the certificate
with the service provider39.

• The information in the client certificate can be protected by delivering the certificate only
over a TLS channel. This is not done with TLS-CCA [6], as the client certificate is trans-
mitted in cleartext during the TLS-CCA handshake. The new Web eID architecture solves
this issue.

6.2.2 Attacker creates a new certificate trust store for the client.

For an attacker it is sufficient to add one trusted CA to the trust store to be able to impersonate
the service provider. Thus, this threat is equivalent to the threat in Section 6.2.4. The threat
can partially be mitigated by using the certificate validation based MITM protection, which is
described in Section 5.2.

6.2.3 Attacker reads/uses/copies client’s certificate trust store.

The certificates in the trust store can be considered to be public. Thus, the attacker does not get
an advantage by just getting read access to these certificates.

6.2.4 Attacker updates client’s certificate trust store.

By adding a root certificate to client’s trust store the attacker will be able to issue certificates,
which are trusted by client’s browser or operating system.

Thus, the attacker is able to impersonate any web service, which does not use pinned certificate
or pinned public key. Therefore, with the help of DNS spoofing it is possible to run a man-in-the-
middle attack against such web sites. It is important to understand that Certificate Transparency

39https://github.com/open-eid/browser-extensions2

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

26 / 65

https://github.com/open-eid/browser-extensions2

may not work for locally issued certificates as the functionality depends on browser configuration.
For example, Google Chrome follows Certificate Transparency only for public certificates40.

Possible mitigations:

• The service provider could theoretically use certificate or public key pinning as mitigation.
However, it is difficult to implement pinning correctly and it may cause issues with stability.
This is the reason why several browser vendors have removed support for HKPK41,42.

• By forcing the client to sign the service provider’s certificate fingerprint along with the chal-
lenge, the real service provider can detect a MITM attack during the authentication phase
by comparing the signed certificate fingerprint with the fingerprint of its own certificate.
More information about the certificate validation based MITM protection can be found from
Section 5.2. This measure does not protect the session identifier against MITM attacks
that are conducted after the authentication phase during a new TLS negotiation.

6.2.5 Attacker deletes client’s certificate trust store or parts of it.

In case a trusted root certificate is removed from the trust store, the client may not be able to visit
web sites or use web services, which rely on that root certificate. Thus, such action can lead
to a denial of service attack. However, the attack does not scale as it requires either remote or
physical access to end-user’s device.

6.2.6 Attacker creates data, which is sent to be signed.

It must not be possible to sign two different documents by issuing a digital signature for only
one of these documents. During the signing process the hash of the document is signed and
not the file itself. Therefore, it must not be possible to find two different documents that give the
same hash value. This must be prevented by the design and choice of the corresponding hash
function.

Thus, we assume in this analysis that the attacker is not able to break the collision resistance
property of the cryptographic hash function that is used for signing.

This threat is relevant both for authentication and signing as in both cases a value is sent to be
signed with one of client’s private keys. The attacker could either initiate the signing process on
its own and trick the user into entering the PIN code or replace the data that the client intends to
sign (see 6.2.8). The service provider may also play the role of an attacker as it could display in-
formation that is different from the data that is going to be signed by the client. See, Section 6.2.9
for more info.

Relevant locations:

• Service provider

• Communication channel

• Client’s browser
40https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/

iMFmpMEkAQAJ
41https://www.chromestatus.com/feature/5903385005916160
42https://www.fxsitecompat.dev/en-CA/docs/2019/http-public-key-pinning-is-no-

longer-supported/

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

27 / 65

https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ
https://www.chromestatus.com/feature/5903385005916160
https://www.fxsitecompat.dev/en-CA/docs/2019/http-public-key-pinning-is-no-longer-supported/
https://www.fxsitecompat.dev/en-CA/docs/2019/http-public-key-pinning-is-no-longer-supported/

• Client device’s operating system

Possible mitigations:

• The integrity of the communication channel is protected by TLS.
• The user should always be able to view what is being signed. This may prevent the ma-
licious or compromised service provider from tricking the user into signing the data that
was created by the attacker.

• The user should be able to download the signature as it can be later used as a legal proof in
case of fraud. Without having the possibility to download and store the signed information
the client has no basis to dispute the legality of the signature.

• An independent card reader with a trusted display could allow the client read and verify
what is being signed.

• A collision resistant cryptographic hash function must be used for signing.

6.2.7 Attacker reads/uses/copies data, which is sent to be signed.

For legally binding signatures this is generally not a threat as signing does not provide con-
fidentiality. In case confidentiality is required, it has to be achieved with other measures like
encryption.

For authentication, see 6.2.18.

6.2.8 Attacker updates data, which is sent to be signed.

We assume in this analysis that the attacker is not able to break the collision resistance property
of the cryptographic hash function that is used for signing. For more info, see 6.2.6.

This threat is relevant both for authentication and signing as in both cases a value is sent to be
signed with one of the private keys. Attacker’s actions can be seen as a man-in-the-middle attack
where the attacker replaces the initial value that the card owner wanted to sign. Such an attack
works even in the case where PIN-pad is used and when the attacker does not have access
to the PIN codes. The user is willing to enter the PIN-code to complete the current action and
therefore does not expect to sign a different value. The attack can be hidden by showing an error
which the users are quite used to, which in turn means that the attack might stay unnoticed.

In case of issuing a legally binding signature, this attack can lead to legal dispute as the attacker
is able to decide what should be signed. The service provider may also play the role of an
attacker as the service provider could display information that is different from the data that is
going to be signed by the client. See, Section 6.2.9 for more info.

In case of authentication, the attacker can replace the authentic challenge sent by one service
provider with a challenge from another service provider in order to get access to the client’s
account, which is connected with the second service provider.

Locations for this attack:

• A malicious service provider could display to the client one value but may ask to sign a
different value.

• Browser (e.g. using a malicious browser extension) can imitate the behaviour of a valid
ID-card extension. In addition, currently it is not possible to limit the access that Google

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

28 / 65

Chrome and Firefox extensions have, and it is quite common for them to ask permission
to access and modify the content on all web pages.

• An attacker with root access to the operating system can modify the messages sent to
be signed. It is unclear whether the data sent to be signed can be invisibly replaced by a
regular user. This may differ depending on the used operating system. We give a recom-
mendation in Section 7.5 to study such issues.

• A malicious smart card reader could replace the data that is sent to be signed.

Possible mitigations:

• The integrity of the communication channel is protected by TLS.

• The user should always be able to view what is being signed. This may prevent the attacker
from changing the data which the client expects to sign or allow the client to detect the
modification.

• The user should be able to download the signature as it can be later used as a legal proof in
case of fraud. Without having the possibility to download and store the signed information
the client has no basis to dispute the legality of the signature.

• Using a trusted device to display the document / value / hash that is going to be signed.
The device should calculate the hash on its own.

• A collision resistant cryptographic hash function must be used for signing.

6.2.9 Attacker creates a new hash, which is sent to be signed.

We assume in this analysis that the attacker is not able to break the collision resistance property
of the cryptographic hash function that is used for signing. For more info, see 6.2.6.

In case the attacker can choose which hash will be signed, the attacker has the power to issue
legally binding signatures without the client knowing what was signed. It may also allow the
attacker to get a signature for a selected authentication challenge and thereby get access to the
chosen service without the client knowing about it.

The information / document displayed in the signing application or web page is not relevant if the
attacker can replace the hash, which is sent to be signed. Attacker’s actions can be seen as a
man-in-the-middle attack between the user interface and the API, which communicates with the
smart card. The attacker could replace the initial value that the card owner wanted to sign. Such
an attack works even in the case where PIN-pad is used and when the attacker does not have
access to the PIN codes. The user is willing to enter the PIN-code to complete the current action
and therefore does not expect to sign something different.

This threat is relevant both for authentication and signing. First, we consider the case where
the attacker has infected the client’s computer and is able to select which hash will be signed.
Second, we consider the case that the service provider sends the hash to the client and the value
is manipulated either by the service provider or while sent over the communication channel.

The hash value could be replaced in the browser or while it is being sent to the smart card
reader. It is unclear whether the hash that is sent to be signed can be invisibly replaced by a
non administrative user. This may differ depending on the used operating system. We give a
recommendation in Section 7.5 to study such issues.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

29 / 65

We assume that TLS is properly configured and that the attacker is not able to modify the integrity
of the messages sent over TLS. However, the client has to trust that the service provider is not
malicious when giving a signature with Web eID. In case the service provider calculates the hash
that is to be signed by the client, the client can not verify what is actually being signed. To do
the verification the client would need to be able to download the data such that the data could
be validated before calculating the hash on the client side. There are issues with both validating
specially formatted data and with downloading large files. Thus, the initial version of Web eID
does not provide such functionality.

Possible mitigations:

• To use a trusted smart card reader which is able to display both the information that is being
signed along with the hash that is calculated by the smart card reader. Unfortunately such
devices are not available on the market.

• The client could protect herself against a malicious service provider by calculating the hash
of the data locally.

• The client should be able to access the signed documents to see what was actually signed.
This information could be used as proof when taking legal action against a malicious ser-
vice provider.

6.2.10 Attacker reads/uses/copies the hash, which is sent to be signed.

For legally binding signatures this is generally not a threat as in most cases the data, which was
hashed can not be restored from the hash. However, in some cases the format of the signed
information is predictable and the attacker could use a brute force approach on only a few fields
in the document to try to find out what was hashed. This threat is relevant when the signed
information is confidential.

For authentication, see 6.2.7.

Possible mitigations:

• When the data that is going to be signed contains sufficient randomness, the attacker is
not able to find the input to the hash function that gives the corresponding hash.

6.2.11 Attacker updates the hash, which is sent to be signed.

This is equivalent to 6.2.9.

6.2.12 Attacker creates a signed hash, which is signed with client’s private key.

We assume that the attacker is not able to create client’s private key, see 6.3.1.

This threat is relevant both for authentication and signing. In order to issue a signature without
waiting for the interaction of the user, the attacker needs at least remote access to both the smart
card and the corresponding PIN code (see 6.3.6). Thus, we consider the case where the attacker
has infected the user’s computer and is able to sign the hash of his choice.

In the case of authentication the attacker may be able to sign a challenge, which gives access
to the corresponding service. It is important to note that when card’s authentication security
environment is open, it can be used without providing PIN1. For the discussion related to card’s
authentication security environment, see Section 6.5.4.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

30 / 65

It is unclear whether the attacker needs administrative permissions to communicate with the
smart card, which is in the reader. This may depend on the used operating system due to the
differences in the interfaces. We give a recommendation in Section 7.5 to study such issues.

Possible mitigations:

• Use a smart card reader with a PIN-pad that only allows to enter the PIN-code from the
PIN-pad.

• A partial mitigation is to allow notifications to be enabled, which would inform the card
owner e.g., when a new signature is given. This could prevent further damage and might
help to dispute the validity of the signature.

6.2.13 Attacker reads/uses/copies the signed hash, which is signed with
client’s private key.

For legally binding signatures this is generally not a threat. However, there are some corner
cases where the hash value may have to be confidential, these are discussed in 6.2.10.

For authentication, the signed hash can be combined into a valid token, which can be used
to initiate a session. Therefore, accessing the signed hash can lead to the hijacking of the
corresponding session.

Possible mitigations:

• Partial mitigation: the signed hash must be accepted only once by the service provider to
initiate the session.

• Partial mitigation: the challenge must have a limited lifespan after which it expires and
after that the signed response does not initiate a new session. The service provider has
to track the lifetime of the challenge on its own and not rely on the timestamp of the signed
challenge that was sent by the client.

6.2.14 Attacker updates the signed hash, which is signed with client’s private
key.

Changing the signed hash would be equivalent to issuing a new signature, see 6.2.12.

6.2.15 Attacker creates a signed container.

This threat is equivalent to 6.2.12 as the critical part of creating a container is signing the hash
value.

6.2.16 Attacker reads/uses/copies the contents of a signed container.

This is not a threat as the signature container is not meant to provide the confidentiality of the
signed data. In case confidentiality is required, it has to be provided by other means.

6.2.17 Attacker creates a new authentication challenge.

This is equivalent to trying to trick the user into entering a PIN code in order to authenticate to a
different service provider. However, if such an attempt is made directly before the user is going

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

31 / 65

to authenticate, the user might be willing to enter the PIN code the second time thinking that
something went wrong with the first request.

Possible mitigations:

• The user is able to verify the origin of the challenge. However, this does not prevent a
powerful MITM attack.

• In case the challenge is signed by the service provider, the client verifies that the signature
on the challenge is connected with the public key, which was used to initiate the TLS
session. In case the attacker signs the challenge on its own then the service provider will
detect the attack during verification.

6.2.18 Attacker reads/uses/copies the authentication challenge.

The server authenticates the client by sending a challenge, which has to be signed along with
additional information (forming the authentication token) by the authentication private key. The
resulting signed authentication token is then returned to the service provider.

In case the attacker could read the challenge, he could sign it himself hoping that the server
does not validate the identity of the signer. However, this attack is trivially mitigated if the server
verifies also the identity of the signer.

It would also be possible to reuse the same challenge by getting the same client to authenti-
cate to a service owned by the attacker. Such an attack would be detected in case the original
service provider is using certificate validation based version of Web eID, which is described in
Section 5.2.

The attacker could copy and store the challenge so that it could be later sent to be signed by the
client.

Possible mitigations:

• Server must validate both the signature and the information inside the signature.

• The signed challenge must be accepted only once by the service provider to initiate the
session.

• The challengemust have a limited lifespan after which it expires, and afterwards the signed
response does not initiate a new session.

• Timestamping the challenges and keeping track of their expiry must be done on the server
side by using server time. Client side time must not be trusted.

6.2.19 Attacker updates the authentication challenge.

In case the attacker can replace the authentic authentication challenge sent by one service
provider with a challenge from the second service provider, the attacker might get access to
the client’s account, which is connected with the second service provider.

Locations:

• A malicious or infected service provider could act as a man-in-the-middle by forwarding
the challenge from a different entity.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

32 / 65

• The challenge could be replaced while it is being transmitted over the communication chan-
nel in case the confidentiality and integrity of the communication channel can be attacked.

• The challenge could be replaced in the user’s browser by a malicious browser extension.
• The challenge could be replaced by intercepting communication between the browser and
the smart card reader.

• The challenge could be replaced by a malicious smart card reader.

Possible mitigations:

• Remote attacks are mitigated as the client has to sign both the origin and the fingerprint of
the service provider’s certificate, and return them to the service provider. Thus, a malicious
service provider or a compromised communication channel can not successfully play the
role of a man-in-the-middle attacker.

• The attack is possible in case user’s device is compromised. It is unclear what level of
access is needed for local interception of the challenge. This may depend on the used
operating system and browser due to the differences in the interfaces. We give a recom-
mendation in Section 7.5 to study such issues.

6.2.20 Attacker deletes the authentication challenge.

This is DoS as the user is prevented from using the corresponding service. This can be used to
force the client to use a weaker authentication method (in case such methods are available).

We assume that the communication channel is protected by TLS. Thus, the attacker can be
located either in the servers of the service provider or in client’s machine. Protecting the service
provider is out of scope for this analysis. Protecting the communication in the local machine
depends on the security of the used interfaces. This has to be investigated for each supported
operating system as the interfaces differ. We give a recommendation in Section 7.5 to study
such issues.

6.2.21 Attacker creates a new unsigned authentication token or its hash.

The authentication token contains the challenge and information about the origin of the challenge
to prevent MITM attacks. The attacker is unlikely to find a challenge from a different service
provider with a colliding value in case the space for selecting the challenge is large enough
and the challenge is randomly generated by using high quality randomness that is suitable for
cryptographic operations. Thus, the attacker is in a situation that is similar to 6.2.17.

In case the attacker is able to affect the way hash is generated, he is able to choose which token
is being signed. This attack requires access to client’s machine.

Mitigation regarding the guessing of the challenge:

• It is important that the source of randomness is suitable for cryptographic operations.
Thus, the randomness must be generated either by using a certified hardware based
random number generator or by a software based random number generator that is suit-
able for cryptographic operations. Operating systems have such software based random
number generators, for example in UNIX-like systems either getrandom(2) or initialized
/dev/urandom must be used. The source of randomness must also be available when it
is needed (therefore blocking /dev/random must not be used in UNIX-like systems).

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

33 / 65

• In case the server that generates the challenge is in a virtual machine and that machine is
cloned, the state of the random number generator may end up the same. Thus, cloning the
virtual machine that contains the server which generates the challenges must be avoided.
If it is not possible, special care should be taken to make sure that randomness states in
the cloned machines diverge before the next challenge is generated.

6.2.22 Attacker reads/uses/copies the unsigned authentication token or its
hash.

The confidential information in the unsigned authentication token is the challenge. Thus,
see 6.2.18.

6.2.23 Attacker updates the unsigned authentication token or its hash.

The attacker either modifies the authentication challenge (see 6.2.17, 6.2.19) or the related in-
formation, which points to the origin of the challenge. When the origin or certificate fingerprint is
modified in the token, the change will be detected later by the service provider who issued the
challenge.

In case the attacker is able to replace the hash of the token, he is able to choose which token is
being signed. This attack requires access to client’s machine.

• The server must verify that the signed authentication token contains the correct origin and
matching certificate fingerprint.

6.2.24 Attacker deletes the unsigned authentication token or its hash.

This threat is equivalent to the one in 6.2.20.

6.2.25 Attacker creates a signed authentication token.

This is only possible when the attacker has access to the signing functionality on client’s machine
and to a valid authentication challenge.

To mitigate this threat, the attacker must be prevented from using the signing functionality and
from changing the content that is sent to be signed (see 6.2.23 and 6.2.19).

Possible mitigations:

• Use a smart card reader with a PIN-pad that only allows to enter the PIN-code from the
PIN-pad.

• A partial mitigation is to allow notifications to be enabled, which would inform the card
owner e.g., when a new signature is given. This could prevent further damage.

6.2.26 Attacker reads/uses/copies the signed authentication token.

The signed authentication token is used as a proof for the service provider to start the session. In
case of a valid token the service provider responds with a session cookie (or equivalent). Thus,
the attacker could use this value to hijack a session. The attacker could also wait and try to reuse
the signed authentication token later.

Locations:

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

34 / 65

• Service provider is not in the scope because when the attacker has compromised the
service provider, the authentication token is not needed any longer.

• The communication channel is assumed to provide confidentiality due to the usage of TLS.

• Amalicious browser extension could read the authentication token. It is unclear where else
in the local machine this value could be accessed. This has to be studied for each sup-
ported operating system as the interfaces differ. We give a recommendation in Section 7.5
to study such issues.

Possible mitigations:

• The service provider must only accept the authentication token once to start a new session.
Thus, the attacker can succeed only if he is first to forward the authentication token to the
service provider. In this case the user is not able to start a session and gets an error
message.

• The challenge must have a limited lifetime and therefore the signed token must also be
bound to the same limited lifetime. The service provider must check that the challenge in
the received authentication token has not expired.

• TLS with client certificate authentication allows the service provider to verify with each
request if the client has access to the authentication private key. In case the attacker
does not have access to the corresponding private key, session hijacking is not possible.
However, TLS with client certificate authentication is not compatible with the new Web eID
architecture.

• Token Binding uses the randomness of the TLS session, more specifically the exported
keying material (EKM), to bind the session token to the TLS session, making it impossible
to successfully reuse the same session token in a different TLS session. For a new TLS
session the client would have to issue a new signature.

6.2.27 Attacker updates a signed authentication token.

This is only possible when the attacker has access to the signing functionality on client’s machine.
Thus, the threat is equivalent to 6.2.25.

6.2.28 Attacker deletes a signed authentication token.

This is DoS, the threat is equivalent to the one in 6.2.24.

6.2.29 Attacker reads/uses/copies the OCSP response.

The OCSP response is not confidential. However, by doing OCSP requests the client gives away
its privacy as the OCSP service provider can see the requests.

Possible mitigations:

• To protect the privacy of clients the service provider should use OCSP stapling43.

43https://en.wikipedia.org/wiki/OCSP_stapling

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

35 / 65

https://en.wikipedia.org/wiki/OCSP_stapling

6.2.30 Attacker creates a session cookie.

In theory, the attacker could guess the value of a valid session cookie, but in practice the prob-
ability is negligible in case the server side uses proper randomness for the cookie. We assume
that the session cookie is generated by using high quality randomness.

We do not consider the cases of a compromised service provider and compromised client device
as in these cases the attacker already has access to either the service or to the valid session.

However, the attacker could create a session cookie and plant it by using a session fixation
vulnerability. This could be implemented remotely in case there is a cross-site scripting (XSS)
vulnerability.

Possible mitigations:

• Guessing the value of the session cookie is mitigated by using a sufficiently long random
value for the session cookie.

• To prevent session fixation, a new session cookie must to be generated on the server side
after the user has completed authentication.

6.2.31 Attacker reads/uses/copies a session cookie.

By reading the value of a valid session cookie (or session token), the attacker can hijack the
corresponding session. The leak could happen in the client device, during transmission or in the
server of the service provider.

The proposed architecture allows to detect MITM during authentication. However, the attacker
could wait until the client has successfully authenticated and initiate the MITM attack once a new
TLS session is started. This would allow the attacker to access the session cookie / token and
thereby hijack the session.

Protecting the service provider’s server is not in the scope of this project. However, there are
existing technologies that prevent the copied session cookie from being successfully reused.

Possible mitigations:

• The confidentiality of the session cookie is protected by TLS during communication.

• If HttpOnly is set on the cookie, client side JavaScript is restricted from accessing the
corresponding cookie. HttpOnly is used as one of the measures to prevent XSS.

• If Secure flag is set on the cookie, the cookie is not transmitted in cleartext through an
unencrypted communication channel (HTTP).

• If SameSite attribute is present, restrictions are set on sending the corresponding cookie to
a third party website. This functionality tries to prevent cross-site request forgery attacks.

• Cookie prefixes help to protect the cookie from non-secure subdomains44.

• TLS with client certificate authentication allows the service provider to verify with each
request if the client has access to the authentication private key. In case the attacker
does not have access to the corresponding private key, MITM and session hijacking is not
possible. However, TLS with client certificate authentication is not compatible with the new
Web eID architecture.

44https://tools.ietf.org/html/draft-ietf-httpbis-cookie-prefixes-00

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

36 / 65

https://tools.ietf.org/html/draft-ietf-httpbis-cookie-prefixes-00

• Token Binding uses the randomness of the TLS session, more specifically the exported
keying material (EKM), to connect the session token to the TLS session, making it impos-
sible to successfully reuse the same session token in a different TLS session (in case the
attacker does not have access to the signing key, which is used to bind the TLS session).

6.2.32 Attacker updates a session cookie.

An attacker is not able to issue a valid session cookie on its own. However, session fixation could
allow the attacker to set his own cookie, see 6.2.30.

6.2.33 Attacker deletes a session cookie.

If the session cookie is removed from client’s browser, the client may think that the session has
ended. It is essentially a denial of service attack. However, it may give the attacker a chance
to continue using the corresponding session cookie without the user being aware of an existing
session. See 6.2.31 for methods on how to prevent the hijacking of a session cookie. This attack
requires either direct or indirect access to the client’s browser.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

37 / 65

6.3 Threats that are out of scope

The scope of the analysis is described in Section 2.2 and is focused on the interaction between
the browser, nativeWeb eID application and the service provider. It was decided that the analysis
would focus on the components which can be affected by the architecture of Web eID. However,
there are also external components and third parties which can not be controlled by the Web eID
architecture, but which can affect its security. Thus, we also list the threats originating from the
components that are out of scope of this analysis. This is done in order to see the overall threat
landscape and to be able to react to the threats from external components. Therefore, these
components must to be regularly reviewed to check whether additional mitigation measures are
necessary.

6.3.1 Attacker manages to create a valid authentication (or signing) private key
for the client. Location does not matter here.
[Out of scope]

We assume that the key length is sufficient to prevent brute force attacks. If an attacker is able
to create a valid private key, he has broken the underlying cryptosystem or the private key was
generated in a predictable manner. We assume in this analysis that breaking the cryptosystem is
not possible. We also assume that the private key is generated according to the requirements set
for the corresponding cryptosystem by using randomness source that is designed to be suitable
for cryptographic applications.

6.3.2 Attacker manages to read/use/copy the client’s authentication (or sign-
ing) private key. Location does not matter here.
[Out of scope]

Attacker has broken the security of ID-card and either extracted the private key or is able to
use the private key without having access to the PIN codes and PUK code. We assume in this
analysis that this is not possible. We assume that the private keys of the ID-card never leave the
card and are generated inside the chip using cryptographically secure randomness.

Possible mitigations:

• The ID-card chip is designed to prevent the extraction of private keys.

• The ID-card firmware protects access to the private key operations with a PIN code. There
is a limited number of attempts to try the PIN / PUK code before the card gets locked.

• The chip contains countermeasures against physical tampering.

6.3.3 Attacker manages to update client’s authentication (or signing) private
key. Location does not matter here.
[Out of scope]

This is either “create” (see 6.3.1) or “delete” (see 6.3.4).

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

38 / 65

6.3.4 Attacker manages to delete client’s authentication (or signing) private
key. Location does not matter here.
[Out of scope]

Attacker renders the private key inaccessible, e.g. by regenerating the key pair. This requires
either breaking the card security or knowing the Management key45. The first is assumed to be
not possible, the second (protecting the Management key) is not in scope. It is also possible to
lock the card by entering wrong PIN or PUK codes.

Possible mitigations:

• The client can go to a service point of a police office to unlock the PIN codes.

6.3.5 Attacker creates (guesses) client’s PIN code(s) in client’s device.
[Out of scope]

Attacker has guessed client’s PIN code(s). Attacker is able to authenticate or issue signatures
at will when ID-card is in the reader.

Possible mitigations:

• Mitigation for brute-force attacks is already implemented: limited number of retries.

• Mitigation against misuse: let the client know about key usages over a secondary channel.

• Mitigation against guessing: use PIN-pad based readers, which only accept PIN-codes
from the PIN-pads. Thus, malware would not be able to send a PIN code to the ID-card
chip.

6.3.6 Attacker reads (learns)/uses/copies client’s PIN code(s) in client’s device.
[Out of scope]

Attacker obtains client’s PIN code(s). The PIN may leak in multiple ways, e.g., it could be
read from application memory, intercepted by a keylogger malware, intercepted from the win-
dow events related with the PIN dialog.

Attacker who has access to PIN codes is able to authenticate or issue signatures at will when
ID-card is in the reader.

Possible mitigations:

• Mitigation against keyloggers: only enter PIN codes from card readers that have pin fire-
walled PIN-pads.

• Mitigation against misuse: let client know about key usages over a secondary channel.

6.3.7 Attacker updates (changes) client’s PIN code(s) in client’s device.
[Out of scope]

Attacker has changed the PIN code(s), invalidating access to the card owner (see 6.3.8) and at
the same time granting itself access to authentication or signing key whenever the card is in the
regular card reader that does not have a PIN-pad.

45https://installer.id.ee/media/id2019/TD-ID1-Chip-App.pdf

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

39 / 65

https://installer.id.ee/media/id2019/TD-ID1-Chip-App.pdf

Attacker needs either the PUK code or the Management key to change PIN1 or PIN2. Protecting
the Management key is not in the scope of this project.

Possible mitigations:

• Protection against remote attackers (malware): only enter PIN codes from card readers
that have PIN-pads. The card reader should only allow the PIN to be entered from the
PIN-pad (i.e., they should have a PIN firewall).

6.3.8 Attacker deletes (locks) client’s PIN code in client’s device.
[Out of scope]

Attacker locks the PIN code(s), invalidating access to either the authentication key or signing
key. This is DoS. User can restore access with PUK code, but we can assume the attacker can
also lock this.

In case the user enters the PUK code, the attacker might intercept it and use it to replace the
PIN codes.

Possible mitigations:

• Only use card readers which only accept PIN-codes from the PIN-pads.

• Client can go to a service point of a police office to unlock the PIN codes.

6.3.9 Attacker creates a valid certificate (signed by a CA) for a selected public
key.
[Out of scope]

This is possible in case the attacker has access to CA’s signing key. The attacker should not be
able to generate the signing key unless the cryptosystem gets broken or the key was generated
in a predictable manner. As an alternative, the attacker would have to get access to the signing
key. This threat is out of scope for this analysis and has to be mitigated by the CA or by the
mechanisms, which are used to audit the CA.

It is also possible that the attacker is able to impersonate an entity who wants a certificate to be
issued. Mitigating social engineering attacks is out of the scope for this analysis.

Possible mitigation:

• Certificate Transparency allows to monitor certificates that are legitimately issued by a CA.
Thereby, the service provider can use information from CT logs to start revocation of a
mistakenly issued certificate.

6.3.10 Attacker updates a valid certificate (signed by a CA) for a selected public
key.
[Out of scope]

This is either “create” (see 6.3.9) or “delete” in case the certificate gets revoked (see 6.3.11).

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

40 / 65

6.3.11 Attacker revokes or suspends a certificate (signed by a CA) for a se-
lected public key.
[Out of scope]

In case a TLS certificate gets revoked and the information reaches the browsers, they will start
to warn users and prevent them from automatically proceeding to the corresponding website.

In case the ID-card signature certificate gets revoked, it will not possible to use that certificate
any longer for issuing legally binding signatures. However, if these certificates get suspended,
they can be reactivated.

Malicious revoking or suspension of a certificate is out of scope for this analysis and has to be
mitigated by the CA or by the mechanisms, which are used to audit the CA.

6.3.12 Attacker creates a long term private key for the service provider.
[Out of scope]

The reasoning is the same as in 6.3.1.

6.3.13 Attacker reads/uses/copies service provider’s long term private key.
[Out of scope]

Access to service provider’s long term private key may give the attacker the option to decrypt
and read the TLS traffic between the corresponding service provider and its clients (only when
ephemeral keys are not used to achieve perfect forward secrecy). Thus, the attacker could
access the values of authentication challenges and session cookies. Therefore, it might be
possible to hijack client’s sessions.

The attacker could set up a fake service, which uses the valid certificate of the service provider.
DNS spoofing is required for this attack to succeed.

Protecting the private key of the service provider is not in the scope of this analysis.

Possible mitigations to session hijacking:

• Token Binding prevents session hijacking by binding the session to the TLS session ran-
domness as described in Section 3.2.

6.3.14 Attacker updates service provider’s long term private key.
[Out of scope]

This is either “create” (see 6.3.12) or “delete” (see 6.3.15).

6.3.15 Attacker deletes service provider’s long term private key.
[Out of scope]

This requires access to the service provider’s servers. Protecting the private key of the service
provider is not in the scope of this analysis.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

41 / 65

6.3.16 Attacker creates a signing key for the eID CA.
[Out of scope]

This threat is out of scope for this analysis and has to be mitigated by the CA or by the mecha-
nisms, which are used to audit the CA. The threat of guessing client’s private key is similar and
it is described in 6.3.1.

6.3.17 Attacker reads/uses/copies eID CA’s signing key.
[Out of scope]

By having access to the signing key of the eID CA the attacker could issue new certificates for
chosen key pairs.

This might allow the attacker to create a duplicate digital identity, which might be used for au-
thentication or issuing signatures in the name of the corresponding user.

Protecting the CA’s signing key is out of scope for this analysis and has to be mitigated by the
CA or by the mechanisms, which are used to audit the CA.

Possible mitigations:

• The service provider must check during authentication that the OCSP response for a
client certificate is good. Thus, just issuing a certificate is not sufficient to trick the ser-
vice provider. Therefore, the service provider must cancel the authentication process in
case good OCSP response is missing or when the OCSP service can not be reached.

• A legally binding signature must contain the OCSP response stating that the signing cer-
tificate was valid during the time the signature was issued. Thus, for a successful attack
the attacker would also have to add the new certificate to list of certificates that the OCSP
service manages.

6.3.18 Attacker updates eID CA’s signing key.
[Out of scope]

See 6.3.16.

6.3.19 Attacker deletes eID CA’s signing key.
[Out of scope]

This threat is out of scope for this analysis and has to be mitigated by the CA.

6.3.20 Attacker creates a signing key for the CA issuing TLS certificates.
[Out of scope]

This threat is out of scope for this analysis and has to be mitigated by the CA or by the mecha-
nisms, which are used to audit the CA. See 6.3.16.

6.3.21 Attacker reads/uses/copies the signing key of the CA issuing TLS cer-
tificates.
[Out of scope]

By having access to CA’s signing key the attacker could issue fraudulent certificates for a chosen
service provider that third parties like browsers can’t distinguish from the legitimate certificates.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

42 / 65

Protecting the CA’s signing key is out of scope for this analysis and has to be mitigated by the
CA or by the mechanisms, which are used to audit the CA.

However, a fraudulently issued certificate could be used for a man-in-the-middle (MITM) attack
as it would allow the attacker to impersonate the corresponding service provider.

Possible mitigations:

• Fraudulently issued certificates could be detected by Certificate Transparency46.

• The MITM attack could be detected if TLS client certificate authentication is used. How-
ever, TLS with client certificate authentication is not compatible with the new Web eID
architecture.

• The MITM attack could be detected in case Token Binding is used.

• The MITM attack could be detected by the service provider if the client signs the origin +
certificate fingerprint of the service provider. In that case the real service provider could
detect MITM in case certificate fingerprint does not match. This approach needs additional
configuration when proxies are used together with TLS as in that case the proxy has to
forward information about it’s certificate to the back-end server.

• The MITM attack could be detected by either the client or the service provider if the service
provider would sign the challenge with the private key that is associated with the certificate
for the corresponding domain. In this case the client would have to check that the sig-
nature verifies with the public key of the party the client is communicating with over TLS.
In case the attacker would sign the challenge on its own, the service provider would later
detect that the initial signature on the challenge was issued by a third party. Currently only
Firefox allows browser extensions to access the public key of the server with whom the
TLS session is established47

6.3.22 Attacker updates the signing key of the CA issuing TLS certificates.
[Out of scope]

See 6.3.20.

6.3.23 Attacker deletes the signing key of the CA issuing TLS certificates.
[Out of scope]

This threat is out of scope for this analysis and has to be mitigated by the CA.

6.3.24 Attacker deletes data, which is sent to be signed.
[Out of scope]

This is DoS as it prevents the client from using the ID-card to issue signatures. Mitigation of this
threat is not in the scope of this analysis.

46https://www.certificate-transparency.org
47https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/

webRequest/SecurityInfo

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

43 / 65

https://www.certificate-transparency.org
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/SecurityInfo
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/SecurityInfo

6.3.25 Attacker deletes the hash, which is sent to be signed.
[Out of scope]

This is DoS as it prevents the client from using the ID-card to issue signatures. Mitigation of this
threat is not in the scope of this analysis.

6.3.26 Attacker deletes the signed hash, which is signed with client’s private
key.
[Out of scope]

This is DoS as it prevents the client from using the ID-card to issue signatures. Mitigation of this
threat is not in the scope of this analysis.

6.3.27 Attacker updates the contents of a signed container.
[Out of scope]

In case the attacker is able to break the second preimage resistance of the cryptographic hash
function, which was used to issue the signature, the attacker might replace the document in the
signed container so that the signature would stay valid.

Possible mitigations:

• A strong cryptographic hash function must be used for issuing signatures.

• The design and implementation of the system should allow to replace the used crypto-
graphic hash function in case vulnerabilities are found. This does not protect the previously
issued signatures, but would allow to quickly fix the issue by replacing the hash function.

6.3.28 Attacker deletes the signed container.
[Out of scope]

By deleting the signed container the attacker may make legal disputes more difficult. Protecting
the availability of data is the responsibility of the parties who exchange signatures, and this is
not in the scope of this analysis.

6.3.29 Attacker creates the OCSP response.
[Out of scope]

This could allow the attacker to use the identity of the victim while the corresponding certificate
has been suspended. This threat is out of scope for this analysis and has to be mitigated by the
CA or by the mechanisms used to audit the CA.

6.3.30 Attacker updates the OCSP response.
[Out of scope]

See 6.3.29.

6.3.31 Attacker deletes the OCSP response.
[Out of scope]

This may happen when the attacker takes down the OCSP service or prevents the OCSP re-
sponses from reaching the requesting party.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

44 / 65

Such an attack could halt the usage of authentication services as the service provider is not able
to verify whether the client certificate is valid.

In case the attacker is able to compromise the TLS private key of the service provider, info about
revoking may reach the browsers with a delay. Thus, the client may continue to accept the
certificate that is connected to the compromised private key. Therefore, the client is not able to
verify the authenticity of the service provider and may instead communicate with the attacker’s
server.

Possible mitigations:

• OCSP stapling should be set to be mandatory (OCSP Must-Staple) in the certificate of
the service provider. In this case the attacker who has compromised the private key of
the service provider must send the OCSP response to the client or the connection will be
terminated by the browser.

• The server side architecture should allow to temporarily use the authentication functionality
without the OCSP service or replace it with a similar functionality. This might be required
when some business critical institutions do not have alternative authentication methods
and need to continue using the ID-card based authentication. This may happen when the
OCSP service is under a cyber attack or the servers are physically destroyed.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

45 / 65

6.4 Assumptions that can be satisfied with current technology

6.4.1 Key length

We assume that the key lengths are sufficient to prevent brute force attacks.

6.4.2 Keys are randomly generated

We assume that the keys are randomly generated by using high quality randomness that is
suitable for cryptographic operations. Therefore we assume that the keys can not be predicted
or guessed.

6.4.3 ID-card keys are generated in the card

We assume that the private keys of the ID-card never leave the card and are generated inside of
the chip.

6.4.4 ID-card private keys do not leak

We assume that the private keys of the ID-card are protected by special hardware and can not
be extracted and leaked.

6.4.5 ID-card keys can not be deleted

We assume that an attacker is not able to delete or regenerate the key pairs of an ID-card.

6.4.6 Only strong cryptosystems with sufficient key lengths are used

We assume that only strong and standardized cryptosystems are used, which can not be broken
with classical computers. E.g., we assume that it is not possible to deduce the private key from
the public key in case the key pair was randomly generated.

What cryptosystems can be considered strong in near term (10 years)? In order to answer this
question, we rely on the ECRYPT CSA 2018 report [1]. An excerpt from the Table 4.6 of the
report is presented in Table 1.

Table 1. ECRYPT CSA recommended key lengths

Cryptosystem Minimal output/key length
Symmetric (AES) 256

RSA 3072
ECC 256

Hash function 256

Concerning padding, ECRYPT CSA report [1] recommends using RSA-PSS instead of PKCS#1
v1.5 for new deployments of RSA signature scheme. PSS scheme is also standardised for use in
JSON Web Algorithms RFC7518 [5]. Note that the standard only supports the schemes utilising
SHA2-256, SHA2-384 and SHA2-512 hash functions.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

46 / 65

In case of elliptic curve signature schemes, there is no need for a special padding. Care
must be taken that the bit lengths of the hash function output and ECC signature input match.
RFC7518 [5] specifies three pairs of ECDSA signature scheme curves and hash functions:

• ECDSA using P-256 and SHA2-256,

• ECDSA using P-384 and SHA2-384, and

• ECDSA using P-521 and SHA2-512.

6.4.7 Quantum computers are not available

We assume that large quantum computers, which could break the modern asymmetric cryp-
tosystems are not available to the attacker. In 2019 Quantum Threat Timeline Report48 was
published and it contains estimates by 22 experts on the field. Half of them estimated that a
quantum computer capable of breaking RSA-2048 will be built within 15 years49.

6.4.8 Attacker with superuser access has complete access

In case an attacker has infected client’s device and has superuser access, we assume that the
attacker has complete access. Thus, the attacker can choose what to draw on the screen, which
values to send to the card reader and the ability to read the keystrokes of the user.

6.4.9 Collision resistance property can not be broken

We assume that the attacker is not able to break the collision resistance property of the crypto-
graphic hash function that is used for signing.

6.4.10 Second preimage resistance property can not be broken

We assume that the attacker is not able to break the second preimage resistance property of the
cryptographic hash function that is used for signing.

6.4.11 The authentication challenge can not be guessed or predicted

We assume that the authentication challenge is generated randomly and has sufficient length /
entropy.

6.4.12 Session cookie is not predictable

We assume that the session cookie has sufficient entropy and is not predictable.

6.4.13 Communication channel is protected by TLS

The communication channel is secured using TLS 1.2 or a newer TLS version. We do not con-
sider attacks against such channels to be in the scope of this analysis as currently these attacks
are not feasible without either compromising the client or the server.

48https://globalriskinstitute.org/publications/quantum-threat-timeline/
49https://quantumcomputingreport.com/our-take/how-many-years-until-a-quantum-

computer-can-break-rsa-2048/

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

47 / 65

https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://quantumcomputingreport.com/our-take/how-many-years-until-a-quantum-computer-can-break-rsa-2048/
https://quantumcomputingreport.com/our-take/how-many-years-until-a-quantum-computer-can-break-rsa-2048/

6.4.14 Secondary channel to inform the user about card use

At the first sight this seems easy – just send the user an email, SMS, push notification or alike.
On the other hand, there may be some scenarios where this may be discouraged (most notably
I-voting where strong evidence of signature device use can be used for vote selling). In case
informing the user would be mandatory, the service would have to be centralized as all service
providers would not be able to set up the secondary channel. However, by having a centralized
service, the privacy of the user becomes an issue. Therefore, the architecture of the functionality
has to be well thought through before a decision is made to implement it.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

48 / 65

6.5 Assumptions that can not be satisfied with current technology

6.5.1 Card readers with PIN pad and trusted preview

Even the officially recommended smart card reader with PIN-firewalled PIN pad (Gemalto ID-
Bridge CT71050) seems to be unavailable in Estonia. Requesting a trusted preview panel seems
even more infeasible. Thus, the first step towards not having to trust the computing device would
be to make the PIN-firewalled PIN pads available to the end-users. By using PIN firewalled smart
card readers the complexity of an attack would increase. As a next step, it should be researched
whether smart card readers with trusted preview are available on the market and how they could
be integrated to the current software ecosystem.

6.5.2 Token Binding

Token Binding (or an equivalent technology) would mitigate a lot of attacks. However, it does not
seem to be universally available across all the browsers and platforms.

6.5.3 Browser extension can access details of TLS connection

Some of the proposed countermeasures for the MITM attack relay on the possibility of access-
ing the public key of the service provider. Currently only Firefox allows an extension to query
information about the TLS connection (e.g., the public key of the service provider for the current
session).

6.5.4 Using separate key pairs for authentication, encryption and authorization

Currently, the Estonian ID-card contains two key pairs, out of which the second key pair is only
used for issuing legally binding signatures. However, the first key pair is used for multiple func-
tionalities like authentication, encryption/decryption, logging into services, opening VPN con-
nections, etc. This is not the best design as mixed usage scenarios may cause unexpected
vulnerabilities.

When the ID-card owner uses his/her card for a longer-period service, say to log onto a terminal,
the card has to be in the reader while the user is logged in, and only when the card is removed
from the reader, the user is logged out. The current Open eID architecture relies on mutually
authenticated TLS. Therefore, Open eID design allows the user to enter PIN1 only once during
the authentication phase, after which the card’s authentication security environment is left open.
Such design allows to use mutually authenticated TLS without constantly asking the user to enter
the PIN1. The downside of this design is that other applications running on the same device could
also use the first key pair while the authentication security environment on the card is open (in
the above example, during the whole period of being logged onto the terminal).

However, the Web eID architecture does not rely on mutually authenticated TLS channels. Thus,
it is no longer necessary to keep the card’s authentication security environment open after the
authentication has been completed. Closing the access to the authentication security environ-
ment would prevent other applications from using the private key from the first key pair. Still,
access to the card’s authentication security environment can not be simply reset, since this can

50https://gemcard.ro/wp-content/uploads/2016/11/Gemalto_IDBridgeCT700_CT710_
brochure.pdf

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

49 / 65

https://gemcard.ro/wp-content/uploads/2016/11/Gemalto_IDBridgeCT700_CT710_brochure.pdf
https://gemcard.ro/wp-content/uploads/2016/11/Gemalto_IDBridgeCT700_CT710_brochure.pdf

interfere with other legitimate applications that are using that security environment at the same
time.

It is an open question to find out how many users would be negatively affected when access
to card’s authentication security environment would be reset by Web eID. In the long run, it is
advised to issue separate key pairs for separate functionalities like authentication, encryption
and authorization. With separate key pairs it would be easier to avoid problems arising from
different security requirements of different usage scenarios.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

50 / 65

7 More topics for discussion

7.1 Server-side security

During the process of writing this report, it remained an open question to which extent can we
assume the security of the service provider’s side, and which residual risks would it be possible
to mitigate within the Web eID framework. On the other hand, it also remained unclear what is
the readiness of an average service provider to implement some extra security measures. Both
of these questions require more detailed analysis in the future.

7.2 End user device security

A similarly important open question concerns the security level of end user devices. There are
many possible combinations of operating system versions, browsers, other software and exten-
sions installed on these devices, etc. Some of these combinations are probably more vulnerable
to malicious attacks than others, but classifying them all remains far outside of the current report.
Nevertheless, in order to correctly assess the security level of Web eID, these aspects need to
be studied in detail.

See also section 7.5.

7.3 Insecure wireless input devices

It is a well-known problem that popular non-Bluetooth wireless input devices (like many Logitech
keyboards) allow eavesdropping and injection of input sequences, most importantly keyboard
strokes. Such devices protect their radio communication by obfuscation only.

7.4 WebUSB vulnerabilities

There is an initiative to open up certain USB devices to direct access from JavaScript. Al-
beit smart card USB devices are currently barred from such usage, there have been vulnera-
bilities and when the protocol gets adopted beyond its current experimental status in Google
Chrome, there will likely be more. See https://wicg.github.io/webusb/ and https:
//www.yubico.com/support/security-advisories/ysa-2018-02/.

7.5 Modelling the runtime environment

Our team of researchers and developers has thoroughly investigated the current technical pro-
posal from the point of view of its runtime deployment structure. Unfortunately, the details known
at the time of writing this are not sufficient for immediate determination of the solutions’ security

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

51 / 65

https://wicg.github.io/webusb/
https://www.yubico.com/support/security-advisories/ysa-2018-02/
https://www.yubico.com/support/security-advisories/ysa-2018-02/

posture, i.e. how well does the solution protect itself against local adversary. One of the most
important open questions is how easy it is for an attacker who has obtained only end user’s (i.e.,
non-administrative) privileges on the computer to attack the user in various ways.

To have clarity in this issue, the following documentation should be prepared in a later part of
development process:

• Assumptions on end user behaviour (e.g. no administrative privileges for everyday work).

• Installation security (e.g. administrative privileges required for installation for Web eID
solution in order to reduce code replacement vectors).

• Complete list of runtime security contexts (e.g. end user space v.s. service user space v.s.
kernel space code, etc) and their interactions, including caller authentication/identification.

• List of measures taken to combat injection/replacement of dynamically loaded libraries.

• List of measures taken to combat UI hijacking (i.e. PIN entry dialogues).

The list should be completed at least for Microsoft Windows as the most widespread consumer
OS, thus being the most lucrative target for attacking.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

52 / 65

A ProVerif analysis

We analyze the protocols for authentication and signing using automatic protocol verification tool
ProVerif. For each protocol, we first show the high-level representation of the protocol steps in
a figure (copied from the initial architecture draft51), and then list in detail the protocol steps as
assumed in our ProVerif models.

Since a smart card uses different keys for authentication and signing, we model these two pro-
tocols separately, so that the analysis would be easier to ProVerif. For each protocol, we have
several slightly different models, employing different protection profiles of Sec. 5. The full ProVerif
models can be found in the files

• eid_auth.pv and eid_sign.pv for the protocols without any protection mechanisms
against MITM attacks;

• eid_auth_originValid.pv and eid_sign_originValid.pv for the protocols with
protection profile of Sec. 5.1;

• eid_auth_certValid.pv and eid_sign_certValid.pv for the protocols with protec-
tion profile of Sec. 5.2;

• eid_auth_nonceSign.pv and eid_sign_nonceSign.pv for the protocols with protec-
tion profile of Sec. 5.3.

After downloading and installing ProVerif tool as explained in the ProVerif project page52, the
analysis can be run as

proverif -in pitype eid_auth.pv
proverif -in pitype eid_auth_originValid.pv
proverif -in pitype eid_auth_certValid.pv
proverif -in pitype eid_auth_nonceSign.pv
proverif -in pitype eid_sign.pv
proverif -in pitype eid_sign_originValid.pv
proverif -in pitype eid_sign_certValid.pv
proverif -in pitype eid_sign_nonceSign.pv

Note that the queries for which an attack is found are commented out from the models. Although
ProVerif feedback is enough to understand the attack, it has some difficulties with reconstructing
the trace, so it is better to execute these queries one by one.

Disclaimer: ProVerif can be used to verify security properties of high-level protocols, but it cannot
discover errors in cryptographic primitives or implementation errors.

51https://github.com/open-eid/browser-extensions2
52https://prosecco.gforge.inria.fr/personal/bblanche/proverif/

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

53 / 65

https://github.com/open-eid/browser-extensions2
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/

Figure 2. Web eID authentication diagram

A.1 Authentication Protocol

The eID authentication protocol is depicted in Figure 2.

A.1.1 Protocol model

Protocol parties:

• User (U) – the user who wants to be authenticated;
• Server (S) – the server who authenticates;
• Browser – the browser with JavaScript interpreter running in the user’s local machine;
• EID – Web eID native application running in the user’s system;
• SCard – smart card owned by the user;
• Online Certificate Status Protocol (OCSP) service is not modeled as a separate party, and
we assume that the Server has a black-box access to OCSP functionality.

Assumptions: Wemodel aMITM attacker that intercepts communication in the public network.
We ignore most of the possible internal threats such as learning the user’s PIN or hacking into
the OCSP service, which need to be treated separately. We only focus on threats coming from
an external attacker. Denial-of-service attacks are also out of scope of ProVerif.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

54 / 65

• The attacker intercepts network communication between the JS application and the Server.
That is, we do not model interception on the level of the user’s local machine.

• The attacker may run an unbounded number of honest user and honest server sessions.
He decides who communicates with whom in which order. He can himself control an
unbounded number of malicious users and malicious servers.

– The attacker may control a user. To simplify modelling, the ProVerif code is written
such that an attacker has issued a smart card for each malicious identity, and the cor-
responding certificate is recorded in the OCSP service. The attacker cannot obtain
a card issued to an honest user.

– The attacker may control a server. TLS certificates are not strong, and the attacker
can impersonate an honest server. We check whether obtaining a fake certificate is
necessary for a particular attack.

• By default, the attacker has full control over the network (as it is usually modeled in
ProVerif), and no one prevents him from getting all messages ever sent over transpar-
ent channels. To model the assumption that the attacker can only intercept the messages
that are sent to his own IP addresses, we model DNS, which fixes an IP address for each
identity, and creates a personal private channel for it. The attacker cannot read the mes-
sages destined to an honest party’s IP unless it has been spoofed. We check whether
DNS spoofing is necessary for a particular attack.
Alternatively, we could allow several IP addresses for the same identity S. However, in
our analysis, we assume that it is fine if the user connects to a different IP as far as the
corresponding identity S is still correct. We also do not distinguish between the attacks
related to adding a fake DNS record, or modifying an existing DNS record. Hence, we
assume that one IP address per identity is sufficient.

• We assume that, once a TLS channel is established, it stays there until the end of authen-
tication. We do not model the internal life of TLS and possible attacks on it. In practice,
one should be careful with session resumption of TLS, as discussed in Sec 5.4.

Protocol steps: Wenow describe the protocol steps in details. In the following, we use notation
[·] to denote optional values that are needed to be sent only for some settings.

1. User inputs into browser the identity S of the server to connect with. Here the ’identity’ is
the same as the one stated in TLS certificate.
U -> Browser: S

2. Browsermakes aDNS lookup, finds the certificate of server S (which is potentially falsified),
establishes TLS connection, and asks for a challenge
Browser -TLS-> S: ’authRequest’

3. Server S generates a fresh nonce N and sends it to Browser. The message is marked
as ’challenge’, as N can be an arbitrary bitstring and has no special format. If we want to
apply the protection method of Sec. 5.3, we also require a signature NSign on N.
S -TLS-> Browser: ’challenge’, N, [NSign]

4. Browser sends to EID a request to meet the challenge. It also delivers the server hostname
S, so that EID could display it to the user. If we choose to sign the server TLS certificate
or the server’s signature on challenge (i.e. apply protection profile of Sec. 5.2 or Sec. 5.3),
we need to submit these as well.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

55 / 65

Browser -> EID: ’authRequest’,S,N, [ServerCert, NSign]

5. EID prompts a PIN from User. In ProVerif model, we add S and N to the message, so that
the inserted PIN can be linked to a particular authentication session. I.e. the response
S,N,PIN cannot be used for another session S’,N’,PIN for S 6= S’ or N 6= N’. In the next
step, we discuss the necessity of actually displaying S and N to the user.

EID -> User: S, N,’need_pin’

6. User inserts the PIN. EID application has to link the received PIN to the correct authentica-
tion session. In practice, if several sessions are running in parallel (e.g. another session
is initiated by clicking on something by mistake), then the user should be aware of which
session exactly he is approving. Ideally, we can display to the user the server identity S
and the challenge N (or some other session ID derived from these two, e.g. a visual image)
which he should verify against the values he sees in the ’correct’ browser window. It may
happen that a careless user does not perform this visual check, or there is some security
environment that allows to re-use the PIN without user having to enter it again. In ProVerif
model, we consider both possibilities, and we need to add S,N to the user’s response if
we want to link the inserted PIN to the correct session.

User -> EID: PIN, [S,N]

7. EID gets the certificate out of the smart card.

EID -> SCard: ’getCertificate()’

8. SCard returns the certificate UserCert to anyone who asks for it, without a PIN.

SCard -> EID: UserCert

9. EID computes a token T = hash(T’), where T’ depends on the protection profile. Let
ServerCert be Server’s TLS certificate (possibly fake) that has been chosen on User’s
side to establish TLS connection. The value of T’ can be one of the following.

• hash(N) if no MITM protection methods are used.
• hash(S,N) for the protection method of Sec. 5.1.
• hash(S,N,ServerCert) for the protection method of Sec. 5.2. In a real application,
the server certificate SHA-256 fingerprint is used instead of the full certificate. This
does not make any difference to ProVerif model, as we do not model details of cryp-
tographic primitives and treat all hashes as ideal.

• hash(S,N,NSign) for the protection method of Sec. 5.3. If we do not add NSign to the
token, then the Server will not be able to check later whether the signature received
by the User was correct, and MITM can sign N himself with his own TLS key.

10. EID forwards the PIN to SCard and asks for a signature on T. A unique identifier SID
links the output of SCard to a particular input to avoid messing up signatures of different
messages. SID is a part of ProVerif model that is not explicitly generated in the real proto-
col. In practice, EID application should match the signature it receives from SCard to the
appropriate authentication session, even if several sessions are running in parallel.

EID -> SCard: SID, T, PIN

11. The SCard computes the signature Sign = sign(SK,T) on T, where SK is the user’s secret
key stored in SCard, and sends it to EID.

SCard -> EID: SID, Sign

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

56 / 65

12. EID attaches Sign to the token T and forwards these to Browser. EID also sends the user
certificate UserCert, which can be later be verified against OCSP service.

EID -> Browser: UserCert, T, Sign

13. Browser forwards received data to the Server through TLS pipe.

Browser -TLS-> S: UserCert, T, Sign

14. The Server verifies the signature and the values stored in T.

15. The Server consults the OCSP service whether the certificate is valid.

16. The Server proceeds only of OCSP has approved the certificate.

17. The Server notifies Browser that the authentication succeeded. The ’ok’ message should
be accompanied with the user name A and the nonce N for which the agreement has
been established. These values prevent the attacker from replaying ’ok’ message from
some previous session. The user name A can be removed if TLS itself ensures that the
message of S that is meant for Bob will not be accepted by Alice. In ProVerif models, we
do not assume the latter by default, as the protocol works with transparent TLS, where no
shared key has been established yet.

Server -TLS-> Browser: A, N, ’ok’

18. The browser displays to the user a message ’ok’. This additional message is needed for
modeling purpose, to verify the consistency of views of the User and the Server.

Browser -> User: S, ’ok’

A.1.2 Security analysis

In the model, we consider relations between the following events.

• event honest(A) – the secret key of party A is not known to the attacker.

• event honestPK(S,PK) – PK is the actual public key of the server S.

• event fakeServerCert(S) – attacker has obtained a fake TLS certificate of S.

• event dnsPoisonedName(S) – attacker modified the DNS table entry of the party S.

• event carelessUser(A) – the user ignores messages accompanying PIN request.

• event signedBySCard(A,M) – the smart card of party A has signed a message M.

• event beginUser(A,S) – the user A started establishing a session with S.

• event endUser(A,S) – the user A has finished authentication to S.

• event endServer(A,S,N) – the server S has accepted authentication of A w.r.t. chal-
lenge N.

• event endJS(A,S,N,PK) – the JS interpreter at A’s side has finished session with S
w.r.t. challenge N, where PK is the public key of S used to establish TLS connection.

• event tlsJS(A,S,TlsNonce) – the JS interpreter at A’s side established a TLS session
defined by TlsNonce with S.

• event tlsServer(A,S,TlsNonce)– the server S established a TLS session defined
by TlsNonce with JS interpreter at A’s side.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

57 / 65

We will further mark with ’+’ successful security proofs (ProVerif answers TRUE), and with ’-’
the disproofs (ProVerif answers FALSE, i.e. an attack trace is found). We group the ProVerif
queries according to security goals. For each query, we first display the straightforward ProVerif
statement, based on the events listed above, and then explain what it means.

In the following, we use the variable T to denote the token signed by the user. The exact structure
of this token depends on the protection profile. If the answer to the query turns out to depend on
the choice of T , we mark it as ± and discuss it.

We are going to analyze whether an honest user A or an honest server S can be impersonated.
We assume that an honest party always behaves according to the protocol rules, and we do
not aim to protect a party that does not follow the protocol. A misbehaving party is treated as
corrupted, and ProVerif does take into account the harm that it may cause to some other party.
The attacker is allowed to control any number of servers and any number of users, so the model
is not constrained to interactions between an honest user A and an honest server S.

Can attacker impersonate A to S?

+ query A : party, S : party, N : bitstring,
NSign : signature, PKS : pkey;
event(honest(A)) && inj-event(endServer(A,S,N))
==> inj-event(signedBySCard(A,T)).

If the server S thinks that he established a connection with an honest user A with session
nonce N, then indeed the smart card of A was used to sign the token T of that session.
This proves that authentication will not work without smart card signing the challenge. This
does not yet prove that the user A is aware of what has been signed with their card.

– query A : party, S : party, N : bitstring;
event(honest(A)) && event(endServer(A,S,N))
==> event(beginUser(A,S)).

If the server S thinks that he established a connection with an honest user A with session
nonce N, but the PIN is not linked to the server hostname, then it may be a replay attack
where A actually does not intend to authenticate to S.

± query A : party, S : party, N : bitstring;
event(honest(A)) && inj-event(endServer(A,S,N))
==> inj-event(beginUser(A,S)) || event(carelessUser(A)).

If the server S thinks that he established a connection with an honest user A with session
nonce N, then unless the user’s PIN has been inserted into a wrong window, the user A
has indeed wanted to connect to S. This fact depends on the used protection mechanism.

– If no protection mechanisms are applied, then the response of A is not linked to any
server identity, and the challenge N could have been forwarded by a MITM attacker.

+ If we apply the protection method of Sec. 5.1, then the signature of A on the origin
prevents server from accepting messages that A planned for some other origin.

+ The method of Sec. 5.2 contains the origin as well, and works similarly to Sec. 5.1.
+ The method of Sec. 5.3 contains the origin as well, and works similarly to Sec. 5.1.

If ProVerif answers TRUE to this query, the liveness of A is proven. However, this does
not yet prove that A is indeed on the other end of the TLS pipe.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

58 / 65

± query A : party, S : party, TlsNonce : bitstring;
event(honest(A)) && event(tlsServer(A,S,TlsNonce))
==> event(tlsJS(A,S,TlsNonce)).

If the server authenticates A, then A is indeed on the other end of TLS pipe. This fact
depends on the used protection mechanism.

– If no protection mechanisms are applied, then the response of A is not linked neither
to any server identity nor any TLS pipe.

± If we apply the protection method of Sec. 5.1, then a MITM attacker that gets a fake
certificate of S may forward the signed challenge of A to S through a separate TLS
connection. For this, the attacker needs to intercept the message that A intended
for S. If the attacker can intercept only those messages that are destined to an IP
address controlled by it, then everything is fine as far as DNS table has not been
poisoned (ProVerif will answer TRUE if we add || event(dnsPoisonedName(S))
or || event(fakeServerCert(S)) to the right-hand-side). In practice, we would
still not be protected e.g. against malware that intercepts all outgoing messages, or
an attacker located at the LAN gateway.

+ If we apply the protection method of Sec. 5.2, then the signature of A on the certificate
used in TLS prevents server from accepting a TLS connection that originates from
an attacker. We assume that the Server and the Attacker do cannot share the same
certificate, and there would still be an attack if the attacker managed to steal the
private key corresponding to the TLS certificate owned by the Server.

+ The protection method of Sec. 5.3 works similarly to the method of Sec. 5.1. In-
stead of signing the TLS certificate directly, A signs the signature on challenge that
it received from S, which is indirectly linked to TLS certificate as well.

We conclude that, as far as the additional protection methods of Sec. 5 are applied, the server
can be convinced that the user is alive, and indeed sits on the other end of the TLS pipe.

Can attacker impersonate S to A?

– query A : party, S : party, PK : pkey, N : bitstring;
event(honest(S)) && event(endJS(A,S,N,PK))
==> event(endServer(A,S,N)).

Without A checking the public key PK or the IP address of the server S against a trusted
source, the attacker may easily impersonate S by presenting a fake TLS certificate.

+ query A : party, S : party, PK : pkey, N : bitstring;
event(honestPK(S,PK)) && inj-event(endJS(A,S,N,PK))
==> inj-event(endServer(A,S,N)).

If the browser is convinced that the server’s public key used in generation of TLS was
indeed the honest server’s one (e.g. confirmed using side-channels), then the nonce N
was indeed generated by the server S that owns the corresponding secret key PK. So even
though the user might not know which session exactly was accepted, the browser does
know it.

+ query A : party, S : party, PK : pkey, N : bitstring;
event(honest(S)) && inj-event(endJS(A,S,N,PK))
==> inj-event(endServer(A,S,N)) || event(dnsPoisonedName(S)).

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

59 / 65

If CA is not trusted, then the browser may instead read server’s IP address from a trusted
DNS table. This works as far as there is no DNS poisoning or message redirection.

+ query A : party, S : party, PK : pkey, N : bitstring;
event(honest(S)) && event(endUser(A,S))
==> event(endServer(A,S,N))|| event(fakeServerCert(S)).

As far as the server has not been impersonated by fake certificates, the user that has
received an authentication approval response can be sure that the real server approved at
least one of the sessions that the user attempted to establish.

– query A : party, S : party, PK : pkey, N : bitstring;
event(honest(S)) && inj-event(endUser(A,S))
==> inj-event(endServer(A,S,N)) || event(fakeServerCert(S)).

Let us now see whether the injective variant of the previous agreement query holds, i.e.
is each server’s acceptance is followed by at most one user’s acceptance. If there are
several sessions running in parallel, the user may get a wrong opinion which one of them
exactly was run with the true server S. This is because we do not show the nonce to the
user. This is not a problem, since it does not matter for the user which one of the sessions
was accepted. From the previous queries, we see that the browser does know what the
correct session ID is.

We conclude that the attacker cannot impersonate S unless he obtains at once a fake certificate
and corrupts the DNS service.

Can the attacker misuse the smart card, which may potentially endanger other applica-
tions that use the same card?

+ query A : party, S : party, N : bitstring,
NSign : signature, PKS : pkey;
event(signedBySCard(A,T))
==> event(beginUser(A,S,N)) || event(carelessUser(A)).

If a smart card has signed something in scope of our protocol, then the user is aware of
it, unless the PIN has been inserted into a wrong window. Note that the events are not
injective, so if the user has approved signing a message M once, it does not yet mean that
the same message can be signed multiple times without user being aware.

– query A : party, S : party, N : bitstring,
NSign : signature, PKS : pkey; event(honest(A))&&
event(honest(S))&& inj-event(signedBySCard(A,T))
==> inj-event(beginUser(A,S,N)) || event(carelessUser(A)).

Let us now see whether the injective variant of the previous agreement query holds, i.e.
is each PIN insertion followed by at most one signing. We see that, even if we link the
user’s PIN to a particular server hostname S and nonce N, it can be used multiple times
to sign exactly the same message. This could potentially make some signature forging
attacks easier by outputting signatures of the same message with different randomness.
This issue seems more like ProVerif incompleteness than a real attack, as in reality an
honest EID would prompt the PIN again each time, even if the message to be signed is
exactly the same. ProVerif assumes that, once a message was sent to some channel, it
can be used an unbounded number of times.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

60 / 65

Figure 3. Web eID signing diagram

We conclude that generation of fake signatures is not possible without user being aware of that,
as far as the PIN has been linked to the correct session.

A.2 Signing Protocol

The eID signing protocol is depicted in Figure 3.

A.2.1 Protocol model

As the protocol structure is very similar to that authentication protocol, the set of parties and the
assumptions are the same as in Sec. A.1.1.

Protocol steps:

1. User inputs into Browser the identity S of the server to connect with. Here the ’identity’ is
the same as the one stated in TLS certificate.

U -> Browser: S

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

61 / 65

2. Browser queries from EID the certificate by sending a constant message.
Browser -> EID: ’getCertificate()’

3. EID shows the constant message ’consent’ to the user to verify their presence.
EID -> U: ’consent’

4. User confirms the consent. We note that the messages are not linked to particular S with
which User tries to connect. Since the same certificate is used in all sessions, and it is
public, this is not a problem.
U -> EID: ’ok’

5. EID gets the certificate out of the smart card.
EID -> SCard: ’getCertificate()’

6. SCard returns the certificate UserCert to anyone who asks for it, without a PIN.
SCard -> EID: UserCert

7. EID forwards UserCert to Browser.
EID -> Browser: UserCert

8. Browser makes a DNS lookup, finds the certificate of server S (which is potentially fake),
establishes TLS connection, and sends UserCert to S.
Browser -TLS-> Server: UserCert

9. Server creates a document container and hashes it with a fresh randomness, creating a
nonce N. At this point, server has not yet verified UserCert.

10. Server sends fresh randomness N to Browser. In reality, N would be a randomized docu-
ment container, but we model it just as a random number. Including the randomness into
document container is important to avoid replay attacks. If we want to apply the protection
method of Sec. 5.3, we also require a signature NSign on N.
Server -TLS-> Browser: ’challenge’,N, [NSign]

11. Browser asks EID for a signature. We need to deliver the server identity S as well, as it
will be displayed to the user. If we choose to sign one the server TLS certificate, or the
server’s signature on challenge, we need to submit these as well.
Browser -> EID: ’authRequest’,S,N, [ServerCert, NSign]

12. EID prompts a PIN from the User. In ProVerif model, we add S and N to the message, so
that the inserted PIN can be linked to a particular authentication session. I.e. the response
S,N,PIN cannot be used for another session S’,N’,PIN for S 6= S’ or N 6= N’.
EID -> User: S,N,’need_pin’

13. User sends PIN to the EID application, which has to link it to the correct authentication
session. Similarly to authentication protocol, we need to add S,N to the user’s response if
we want to link the inserted PIN to the correct session. Including N is more important for
the signing protocol, since N depends on the contents of the document container, and the
user should see what he is signing even if the server identity S is correct.
User -> EID: PIN, [S,N]

14. Similarly to the authentication protocol, EID constructs a token T according to particular
protection profile, and a unique identifier SID links the output of SCard to a particular input
to avoid messing up signatures of different messages.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

62 / 65

EID -> SCard: SID, T, PIN

15. The SCard computes the signature Sign = sign(SK,T) on T, where SK is the user’s secret
key stored in SCard, and sends it to EID.
SCard -> EID: SID, Sign

16. EID forwards the signature Sign to Browser.
EID -> Browser: Sign

17. Browser forwards the signature Sign to the Server. We label this message as ’userSigna-
ture’, since a signature itself is a bitstring which does not have a specific format, and can
be confused with other messages.
Browser -TLS-> S: ’userSignature’, Sign

18. The Server verifies the signature and attaches it to the container.
19. The Server consults the OCSP service whether the certificate is valid.
20. The Server proceeds only of OCSP has approved the certificate.
21. The Server notifies the Browser that the signing succeeded.

Server -TLS-> Browser: A, N, ’ok’

22. The browser displays to the user a message ’ok’. This additional message is needed
mainly for modeling purpose, to verify the consistency of views of an honest User and an
honest Server.
Browser -> User: S, ’ok’

A.2.2 Security analysis

As the protocol structure is very similar to that of authentication protocol, we run the sameProVerif
queries. The answers to these queries are similar to the authentication protocol, sharing same
strengths and weaknesses. There are however some small differences.

• Signing the origin and/or the TLS certificate (protection profiles of Sec. 5.1 and Sec. 5.2)
help to prove that, if the server authenticates A, then A is indeed on the other end of TLS
pipe. The advantage of signing protocol is that it finishes after the last step, so we do not
need to worry what happens next, and whether A has indeed been on the other end of the
TLS pipe. The goal of the protocol is still achieved as far as the real A signed the document
that the server wanted it to sign, even if the MITM attacker forwarded all messages.

• If the document container to be signed contains private information, then it may indeed be
important who is on the other side of TLS. In this case, A would need to be authenticated
before the document container hash is sent out, which would be something different from
the protocol of Fig. 3.

• Differently from authentication, it can now be important to see which challenge N exactly
was signed. That is, when the user inserts PIN, he sees the contents of the signed docu-
ment container through the browser, and not through eID interface. While it is impractical
to show the entire signed document through eID window, the value N is anyway not the
document itself, but a hash, which could possibly be displayed by eID as well to reduce
trust in browser. Again, since the user cannot compute the hash from visually observed
document, they would need to trust the browser to do this automatically, or download the
document and compute the hash by some independent tool, which would already make
the ceremony very different from what we had initially. Visual verification of a hash can
also be challenging, as small difference in some symbols can easily remain unnoticed.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

63 / 65

A.3 Summary

Table 2 summarizes the capabilities of an external attacker for different protection profiles for
both the authentication and the signing protocols. To make the representation more compact,
we denote the event “the attacker is able to intercept messages destined to the server” as AIP,
and “the attacker can obtain a fake TLS certificate” as ACERT.

We note that we do not consider the problems related to the assumption that the user thoroughly
reads the hash that he is going to sign, and compares it carefully against the hash of the actual
document that he wanted to get signed. Problems on user side are out of scope of an external
attacker analysis.

protection profile user impersonation server impersonation
none NOT OK ¬AIP ∨ ¬ACERT ⇒OK
origin signing (Sec. 5.1) ¬AIP ∨ ¬ACERT ⇒OK ¬AIP ∨ ¬ACERT ⇒OK
cert signing (Sec. 5.2) OK ¬AIP ∨ ¬ACERT ⇒OK
challenge signing (Sec. 5.3) OK ¬AIP ∨ ¬ACERT ⇒OK

Table 2. Summary of ProVerif analysis for different protection profiles, where AIP denotes that
the attacker can poison DNS tables, and ACERT that the attacker can obtain a fake certificate for
an honest server’s name.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

64 / 65

Bibliography

[1] Michel Abdalla, Tor Erling Bjørstad, Carlos Cid, Benedikt Gierlichs, Andreas Hülsing, Atul
Luykx, Kenneth G. Paterson, Bart Preneel, Ahmad-Reza Sadeghi, Terence Spies, Martijn
Stam, Michael Ward, Bogdan Warinschi, and Gaven Watson. Algorithms, key size and pro-
tocols report. Technical report, ECRYPT CSA, 2018.

[2] Colin Boyd and AnishMathuria. Protocols for Authentication and Key Establishment. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[3] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie Bursztein,
Michael Bailey, J. Alex Halderman, and Vern Paxson. The security impact of HTTPS inter-
ception. In Proceedings of NDSS 2017. The Internet Society, 2017.

[4] Phillip Hallam-Baker, Rob Stradling, and Jacob Hoffman-Andrews. DNS Certification Author-
ity Authorization (CAA) Resource Record. RFC 8659, November 2019.

[5] M. Jones. JSON Web Algorithms (JWA), May 2015. RFC7518.

[6] Arnis Parsovs. Practical issues with TLS client certificate authentication. In 21st Annual
Network and Distributed System Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014, 2014.

[7] Emily Stark, Ryan Sleevi, Rijad Muminovic, Devon O’Brien, Eran Messeri, Adrienne Porter
Felt, Brendan McMillion, and Parisa Tabriz. Does certificate transparency break the web?
measuring adoption and error rate. In 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019, pages 211–226, 2019.

Analysis of planned architectural changes in Open-eID

December 18, 2020

1.3

65 / 65

	Contents
	Executive summary
	Introduction
	Terminology
	The scope of the analysis
	Security objectives and requirements
	Security of authentication
	Security of signing

	Technologies
	Arguments for choosing OpenID Connect ID Token format and custom protocol
	Token Binding
	Certificate Transparency
	OCSP stapling
	TLS session resumption

	Compatibility with TLS Client Certificate Authentication
	Comparison of TLS-CCA with other common authentication architectures
	Session hijacking attacks

	Protection against man-in-the-middle attacks
	Origin validation
	Certificate validation
	An alternative approach: signing the challenge
	Remaining risks and possible mitigations

	Threats and assumptions
	System components
	Assets
	Locations
	Actions

	Threats
	Attacker reads/uses/copies a certificate.
	Attacker creates a new certificate trust store for the client.
	Attacker reads/uses/copies client's certificate trust store.
	Attacker updates client's certificate trust store.
	Attacker deletes client's certificate trust store or parts of it.
	Attacker creates data, which is sent to be signed.
	Attacker reads/uses/copies data, which is sent to be signed.
	Attacker updates data, which is sent to be signed.
	Attacker creates a new hash, which is sent to be signed.
	Attacker reads/uses/copies the hash, which is sent to be signed.
	Attacker updates the hash, which is sent to be signed.
	Attacker creates a signed hash, which is signed with client's private key.
	Attacker reads/uses/copies the signed hash, which is signed with client's private key.
	Attacker updates the signed hash, which is signed with client's private key.
	Attacker creates a signed container.
	Attacker reads/uses/copies the contents of a signed container.
	Attacker creates a new authentication challenge.
	Attacker reads/uses/copies the authentication challenge.
	Attacker updates the authentication challenge.
	Attacker deletes the authentication challenge.
	Attacker creates a new unsigned authentication token or its hash.
	Attacker reads/uses/copies the unsigned authentication token or its hash.
	Attacker updates the unsigned authentication token or its hash.
	Attacker deletes the unsigned authentication token or its hash.
	Attacker creates a signed authentication token.
	Attacker reads/uses/copies the signed authentication token.
	Attacker updates a signed authentication token.
	Attacker deletes a signed authentication token.
	Attacker reads/uses/copies the OCSP response.
	Attacker creates a session cookie.
	Attacker reads/uses/copies a session cookie.
	Attacker updates a session cookie.
	Attacker deletes a session cookie.

	Threats that are out of scope
	Attacker manages to create a valid authentication (or signing) private key for the client. Location does not matter here.[Out of scope]
	Attacker manages to read/use/copy the client's authentication (or signing) private key. Location does not matter here.[Out of scope]
	Attacker manages to update client's authentication (or signing) private key. Location does not matter here.[Out of scope]
	Attacker manages to delete client's authentication (or signing) private key. Location does not matter here.[Out of scope]
	Attacker creates (guesses) client's PIN code(s) in client's device.[Out of scope]
	Attacker reads (learns)/uses/copies client's PIN code(s) in client's device.[Out of scope]
	Attacker updates (changes) client's PIN code(s) in client's device.[Out of scope]
	Attacker deletes (locks) client's PIN code in client's device.[Out of scope]
	Attacker creates a valid certificate (signed by a CA) for a selected public key.[Out of scope]
	Attacker updates a valid certificate (signed by a CA) for a selected public key.[Out of scope]
	Attacker revokes or suspends a certificate (signed by a CA) for a selected public key.[Out of scope]
	Attacker creates a long term private key for the service provider.[Out of scope]
	Attacker reads/uses/copies service provider's long term private key.[Out of scope]
	Attacker updates service provider's long term private key.[Out of scope]
	Attacker deletes service provider's long term private key.[Out of scope]
	Attacker creates a signing key for the eID CA.[Out of scope]
	Attacker reads/uses/copies eID CA's signing key.[Out of scope]
	Attacker updates eID CA's signing key.[Out of scope]
	Attacker deletes eID CA's signing key.[Out of scope]
	Attacker creates a signing key for the CA issuing TLS certificates.[Out of scope]
	Attacker reads/uses/copies the signing key of the CA issuing TLS certificates.[Out of scope]
	Attacker updates the signing key of the CA issuing TLS certificates.[Out of scope]
	Attacker deletes the signing key of the CA issuing TLS certificates.[Out of scope]
	Attacker deletes data, which is sent to be signed.[Out of scope]
	Attacker deletes the hash, which is sent to be signed.[Out of scope]
	Attacker deletes the signed hash, which is signed with client's private key.[Out of scope]
	Attacker updates the contents of a signed container.[Out of scope]
	Attacker deletes the signed container.[Out of scope]
	Attacker creates the OCSP response.[Out of scope]
	Attacker updates the OCSP response.[Out of scope]
	Attacker deletes the OCSP response.[Out of scope]

	Assumptions that can be satisfied with current technology
	Key length
	Keys are randomly generated
	ID-card keys are generated in the card
	ID-card private keys do not leak
	ID-card keys can not be deleted
	Only strong cryptosystems with sufficient key lengths are used
	Quantum computers are not available
	Attacker with superuser access has complete access
	Collision resistance property can not be broken
	Second preimage resistance property can not be broken
	The authentication challenge can not be guessed or predicted
	Session cookie is not predictable
	Communication channel is protected by TLS
	Secondary channel to inform the user about card use

	Assumptions that can not be satisfied with current technology
	Card readers with PIN pad and trusted preview
	Token Binding
	Browser extension can access details of TLS connection
	Using separate key pairs for authentication, encryption and authorization

	More topics for discussion
	Server-side security
	End user device security
	Insecure wireless input devices
	WebUSB vulnerabilities
	Modelling the runtime environment

	ProVerif analysis
	Authentication Protocol
	Protocol model
	Security analysis

	Signing Protocol
	Protocol model
	Security analysis

	Summary

	Bibliography

